Last update: 07.02.2005    

Intense Terahertz Excitation of Semiconductors

Overview seminar talk

Spectroscopy of semiconductors and semiconductor structures in the far-infrared (FIR) (wavelengths extending from 30 to 1000 µm, which corresponds to photon energies from 35 to 1 meV) is of importance because the characteristic energies of many elementary excitations of solids are lying in this spectral range. Among them are the plasma oscillation energy, ionization energies of typical shallow donors and acceptors, cyclotron resonance and spin flip energies, the characteristic size-quantization energies of low dimensional electron systems, optical phonon energies etc.

The development of high-power pulsed FIR lasers like the transversaly excited atmosperic pressure (TEA) CO2-laser pumped molecular lasers [1,2] and, subsequently, the free-electron lasers [3,4] capable of delivering nanosecond pulses of high intensity, up to a few megawatt, has opened totally new fields in investigations of semiconductors and provided a basis for development of far-infrared spectroscopy of semiconductors at high excitation levels, which was first made use of at the A.F. Ioffe Physico-Technical Institute [5].

In this frequency range high radiation intensity gives rise to a variety of nonlinear phenomena in semiconductors and semiconductor structures. Among these phenomena are multiphoton absorption [6-15], tunneling [16-26], absorption saturation (bleaching) [27-39], nonlinear cyclotron resonance [40-43], impact ionization in the radiation field [44-47], nonlinear photoacoustic spectroscopy [48], high-harmonic generation [49-51], the high-frequency Stark effect [52-53], and terahertz dynamics of excitons [54,55].

From the point of view of fundamental physics the far-infrared spectral range is of basic interest because in the electron-radiation interaction in this range the transition occurs from semiclassical physics with a classical field amplitude to the fully quantized limit with photons. This yields the unique possibility to study the same physical phenomenon in both limits. By properly varying the frequency or intensity of radiation one can achieve that either the discrete properties of light quanta or the wave character of the radiation field dominates the radiation-matter interaction.

Since the photon energy in the FIR is much smaller than the energy gap of typical semiconductors, there can be no direct one-photon generation of free carriers. Hence the observation of relatively weak effects of carrier redistribution in momentum space and on the energy scale becomes possible. Another attractive feature of FIR spectroscopy at high excitation levels stems from the number of photons in the radiation field. As at a given intensity the photon flux is much larger than in the visible range, thus photon number dependent experiments like photocurrents are of higher sensitivity. The high radiation intensity permits to study such photoelectric phenomena in detail as, for instance, linear and nonlinear electron-gas heating [28,44-47,56-61], photoelectric phenomena associated with Bloch oscillations [62,63], photon drag of electrons [5,64-69], photogalvanic effects [70-74], photoresistive effects produced in semiconductor structures at plasma reflection [75-79], multiphoton resonant tunneling in quantum-well structures [22], and monopolar spin orientation [80,81], as well as to use these effects in the development of radiation detectors [63-68,82-88].

References

  1. T. Y. Chang and T. J. Bridges, Opt. Commun. 1, 423 (1970).
  2. Th. de Temple, in: Infrared and Millimeter Waves, ed. by K. J. Button, N. Y., vol. 1, 129 (1979).
  3. L. R. Elias, J. Hu, and G. Ramian, Nucl. Instrum. Methods A 237, 203 (1985).
  4. L. R. Elias, G. Ramian, J. Hu, and A. Amir, Phys. Rev. Lett. 57, 424 (1986).
  5. S. D. Ganichev, S. A. Emel'yanov, and I. D. Yaroshetski, JETP Lett. 35, 368 (1982).
  6. W. Böhm, E. Ettlinger, and W. Prettl, Phys. Rev. Lett. 47, 1198 (1981).
  7. S. D. Ganichev, S. A. Emel'yanov, E. L. Ivchenko, E. Yu. Perlin, and I. D. Yaroshetski, JETP Lett. 37, 568 (1983).
  8. S. D. Ganichev, S. A. Emel'yanov, E. L. Ivchenko, E. Yu. Perlin, Ya. V. Terent'ev, A. V. Fedorov, and I. D. Yaroshetski, Sov. Phys. JETP 64, 729 (1986).
  9. A. Avetissian, M. Hosek, and H. Minassian, Solid State Commun. 60, 419 (1986).
  10. B. N. Murdin, C. R. Pidgeon, A. K. Kar, D. A. Jaroszynski, J. M. Ortega, R. Prazeres, F. Glotin, and D. C. Hutchings, Opt. Materials, 2, 89 (1993).
  11. P. S. S. Guimarães, B. J. Keay, J. P. Kaminski, S. J. Allen, Jr., P. F. Hopkins, A. C. Gossard, L. T. Florez, and J. P. Harbison, Phys. Rev. Lett. 70, 3792 (1993).
  12. B. Galdrikian, B. Birnir, and M. Sherwin, Phys. Lett. A 203, 319 (1995).
  13. B.J. Keay, S.J. Allen Jr., K.D. Maranowski, A.C. Gossard, et al., Surface Science, 361-362, 176 (1996).
  14. S. D. Ganichev, H. Ketterl, and W. Prettl, Physica B 272, 464 (1999).(PDF)
  15. A.H. Chin, O.G. Calderón, and J. Kono, Phys. Rev. Lett. 86, 3292 (2001).
  16. S. D. Ganichev, W. Prettl, and P. G. Huggard, Phys. Rev. Lett. 71, 3882 (1993).(PDF)
  17. S.D. Ganichev, J. Diener, I.N. Yassievich, W. Prettl, B.K. Meyer, and K.W. Benz, Phys. Rev. Lett. 75, 1590 (1995).(PDF)
  18. S.D. Ganichev, E. Ziemann, Th. Gleim, W. Prettl, I.N. Yassievich, V.I. Perel, I. Wilke, and E.E. Haller, Phys. Rev. Lett. 80, 2409 (1998).(PDF)
  19. S. D. Ganichev, I. N. Yassievich, and W. Prettl, Semicond. Sci. Technol. 11, 679 (1996).(PDF)
  20. S.D. Ganichev, W. Prettl, and I.N Yassievich, Phys. Solid. State 39, 1703 (1997).(PDF)
  21. S. D. Ganichev, Physica B 273-274, 737 (1999).(PDF)
  22. S.D. Ganichev, I.N Yassievich, V. I. Perel, H. Ketterl, and W. Prettl, Phys. Rev. B65, 085203 (2002).(PDF)
  23. S. D. Ganichev, J. Diener, and W. Prettl, Solid State Commun. 92, 883 (1994).
  24. S. D. Ganichev, J. Diener, I. N. Yassievich, and W. Prettl, Europhys. Lett. 29, 315 (1995).
  25. E. Ziemann, S.D. Ganichev, I.N. Yassievich, V.I. Perel, and W. Prettl, J. Appl. Phys. 87, 3843 (2000).(PDF)
  26. S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, and E.R. Weber, Phys. Rev. B61, 10361 (2000).(PDF)
  27. C. R. Pidgeon, A. Vass, G. R. Allan, W. Prettl, and L. Eaves, Phys. Rev. Lett. 50, 1309 (1983).
  28. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, and I. D. Yaroshetski, Sov. Phys. Semicond. 21, 615 (1987).
  29. Yia-Chung Chang, and R.B. James, Phys. Rev. B. 39, 12672 (1989).
  30. G. Jungwirt, R. Kropf, and W. Prettl, Int. J. Infrared and Millimeter Waves 12, 729 (1991).
  31. R. Till and F. Keilmann, Phys. Rev. B 44, 1554 (1991).
  32. F. Keilmann, Infrared Phys. 31, 373 (1991).
  33. M. Helm, T. Fromherz, B. N. Murdin, C. R. Pidgeon, K. K. Geerinck, N. J. Hovenyer, W. Th. Wenckebach, A. F. G. van der Meer, and P. W. van Amersfoort, Appl. Phys. Lett. 63, 3315 (1993).
  34. K. Craig, C. L. Felix, J. N. Heyman, A. G. Markelz, M. S. Sherwin, K. L. Campman, P. F. Hopkins, and A. C. Gossard, Semicond. Sci. Technol. 9, 627 (1994).
  35. W. J. Li, B. D. McCombe, J. P. Kaminski, S. J. Allen, M. I. Stockman, L. S. Muratov, L. N. Pandey, T. F. George, and W. J. Schaff, Semicond. Sci. Technol. 9, 630 (1994).
  36. S.R. Ryu, G. Herold, J. Kono, M. Salib, et al., Superlattices and Microstructures, 21, 241 (1997).
  37. S. K. Singh, B. D. McCombe, J. Kono, S. J. Allen, Jr., I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. B 58, 7286 (1998).
  38. S. D. Ganichev, S. N. Danilov, E. L. Ivchenko, H. Ketterl, L. E. Vorobjev, M. Bichler, W. Wegscheider, and W. Prettl, Physica E 10, 52 (2001).
  39. S.D. Ganichev, S.N. Danilov, V.V. Bel'kov, E.L. Ivchenko, M. Bichler, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 88, 057401-1 (2002).(PDF)
  40. M. Weispfenning, I. Hoeser, W. Böhm, W. Prettl, and E. Schöll, Phys. Rev. Lett. 55, 754 (1985).
  41. J. Kaminski, J. Spector, W. Prettl, and M. Weispfenning, Appl. Phys. Lett. 52, 233 (1988).
  42. J. Kono, B. D. McCombe, J.-P. Cheng, I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. B 50, R12242 (1994).
  43. J. Kono, A. H. Chin, A. P. Mitchell, T. Takahashi, and H. Akiyama, Appl. Phys. Lett. 75, 1119 (1999).
  44. S. D. Ganichev, A. P. Dmitriev, S. A. Emel'yanov, Ya. V. Terent'ev, I. D. Yaroshetski, and I. N. Yassievich, JETP Lett. 40, 948 (1984).
  45. S. D. Ganichev, A. P. Dmitriev, S. A. Emel'yanov, Ya. V. Terent'ev, I. D. Yaroshetski, and I. N. Yassievich, Sov. Phys. JETP 63, 256 (1986).
  46. S. D. Ganichev, J. Diener, and W. Prettl, Appl. Phys. Lett. 64, 1977 (1994).
  47. A.G. Markelz, N.G. Asmar, E.G. Gwinn and Berinder Brar, Appl. Phys. Lett. 69, 3975 (1996).
  48. A. Schilz, L. Huber, W. Prettl, and J. Kaminski, Appl. Phys. Lett. 60, 2394 (1992).
  49. A. Mayer and F. Keilmann, Phys. Rev. B 33, 6962 (1986).
  50. W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, Phys. Rev. B. 48, 2376 (1993).
  51. Third harmonic generation in GaAs/AlGaAs superlattice in the Bloch oscillator regime, M.C. Wanke, A.G. Markelz, K. Unterrainer, S. J. Allen and R. Bhaat, in Hot Carriers in Semiconductors, edited by K. Hess, J. P. Leburton and U. Ravaioli (Picnum Press, 1996).
  52. M. Holthaus and D. W. Hone, Phys. Rev. B 49, 16605 (1994).
  53. K.B. Nordstrom, K. Johnsen, S. J. Allen, Jr., A.-P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, Phys. Rev. Lett. 81, 457 (1998).
  54. J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, Jr., and H. Sakaki, Phys. Rev. Lett. 79, 1758 (1997).
  55. J. Cerne, J. Kono, M. S. Sherwin, M. Sundaram, A. C. Gossard, and G. E. W. Bauer, Phys. Rev. Lett. 77, 1131 (1996).
  56. S. D. Ganichev, S. A. Emel'yanov, and I. D. Yaroshetski, JETP Lett. 38, 448 (1983).
  57. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, G. M. Gusev, Z. D. Kvon, M. Yu. Martisov, A. Ya. Shik, and I. D. Yaroshetski, JETP Lett. 48, 269 (1988).
  58. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, G. M. Gusev, Z. D. Kvon, A. Ya. Shik, and I. D. Yaroshetski, Sov. Phys. JETP 70, 1138 (1990).
  59. J. Cerne, A. G. Markelz, M. S. Sherwin, S. J. Allen, M. Sundaram, A. C. Gossard, P. C. van Son, and D. Bimberg, Phys. Rev. B 51, 5253 (1995).
  60. I. N. Kotel'nikov, A. Ya. Shul'man, S. D. Ganichev, N. A. Varvanin, B. Mayerhofer, and W. Prettl, Solid State Commun. 97, 827 (1996).(PDF)
  61. N. G. Asmar, J. Cerne, A. G. Markelz, E. G. Gwinn, M. S. Sherwin, K. L. Campman, and A. C. Gossard, Appl. Phys. Lett. B 68, 829 (1996).
  62. A. A. Ignatov, E. Schomburg, K. F. Renk, W. Schatz, J. E. Palmier, and F. Mollot, Ann. Physik 3, 137 (1994).
  63. K. Unterrainer, B. J. Keay, M. C. Wanke, S. J. Allen, D. Leonard, G. Medeiros-Ribeiro, U. Bhattacharya, and M. J. W. Rodwell,
    Phys. Rev. Lett. 76, 2973 (1996).
  64. M. F. Kimmitt, F. I. M. Hammouda, and A. M. A. Assar, Infrared Physics 23, 63 (1983).
  65. S. D. Ganichev, S. A. Emel'yanov, and I. D. Yaroshetski, Fiz. Tekh. Poluprovodn. 17, 698 (1983) [Sov. Phys. Semicond. 17, 436 (1983)].
  66. S. D. Ganichev, S. A. Emel'yanov, Ya. V. Terent'ev, and I. D. Yaroshetski, Sov. Phys. Semicond. 18, 164 (1984).
  67. E. Garate, R. Cook, C. Shaughnessy, G. Boudreaux, and J. Walsh, Int. J. Infrared and Millimeter Waves 7, 1827 (1986).
  68. M. F. Kimmitt, C. R. Pidgeon, D. A. Jaroszynski, R. J. Bakker, A. F. G. van der Meer, and D. Oepts, Int. J. Infrared and Millimeter Waves 13, 1065 (1992).
  69. S. D. Ganichev, E. L. Ivchenko, R. Ya. Rasulov, I. D. Yaroshetski, and B. Ya. Averbukh, Phys. Solid State 35, 104 (1993).
  70. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, Yu. B. Lyanda-Geller, and I. D. Yaroshetski, Sov. Phys. Solid State 30, 418 (1988).
  71. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, Yu. B. Lyanda-Geller, and I. D. Yaroshetski, Sov. Phys. Solid State 31, 63, (1989).
  72. E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, Yu. B. Lyanda-Geller, and I. D. Yaroshetski, Sov. Phys. Solid State 35, 238 (1993).
  73. S. D. Ganichev, E. L. Ivchenko, H. Ketterl, W. Prettl, and L. E. Vorobjev, Apl. Phys. Lett. 77, 3146 (2000).
  74. S. D. Ganichev, E. L. Ivchenko, and W. Prettl, Physica E, (2002).(PDF)
  75. S. D. Ganichev, I. N. Kotel'nikov, N. A. Mordovets, A. Ya. Shul'man, and I. D. Yaroshetski, JETP Lett. 44, 301 (1986).
  76. S. D. Ganichev, K. Yu. Glukh, N. A. Mordovets, A. Ya. Shul'man, and I. D. Yaroshetski, Sov. Phys. JETP 75, 495 (1992).
  77. I. N. Kotel'nikov, A. Ya. Shul'man, N. A. Mordovets, S. D. Ganichev, and W. Prettl, J. Phys. Low-Dimens. Struct. 12, 133 (1995).
  78. S. D. Ganichev, A. Ya. Shul'man, N. A. Mordovets, I. N. Kotel'nikov, and W. Prettl, Int. J. Infrared and Millimeter Waves 17, 1353 (1996).
  79. I. N. Kotel'nikov, A. Ya. Shul'man, N. A. Varvanin, S.D. Ganichev, B. Mayerhofer, and W. Prettl, JETP Lett. 62, 48 (1995).
  80. S.D. Ganichev, S.N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, W. Prettl, and E.L. Ivchenko, Phys. Rev. Lett. 86, 4358 (2001).(PDF)
  81. S.D. Ganichev, E.L. Ivchenko, V.V. Bel'kov, S.A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider and W. Prettl, Nature (London) 417, 153 (2002).(PDF)
  82. S. D. Ganichev, Ya. V. Terent'ev, and I. D. Yaroshetski, Sov. Tech. Phys. Lett. 11, 20 (1985).
  83. S. D. Ganichev, S. A. Emel'yanov, A. G. Pakhomov, Ya. V. Terent'ev, and I. D. Yaroshetski, Sov. Tech. Phys. Lett. 11, 377 (1985).
  84. A. V. Andrianov, E. V. Beregulin, S. D. Ganichev, K. Yu. Glukh, and I. D. Yaroshetski, Sov. Tech. Phys. Lett. 14, 580 (1988).
  85. S. D. Ganichev, K. Yu. Glukh, I. N. Kotel'nikov, N. A. Mordovets, A. Ya. Shul'man, and I. D. Yaroshetski, Sov. Tech. Phys. Lett. 15, 582 (1989).
  86. E. V. Beregulin, S. D. Ganichev, I. D. Yaroshetski, P. T. Lang, W. Schatz, and K. F. Renk, Phys. Concepts of Materials for Novel Opto-Electronic Device Applications II: Device Physics and Applications, Proc. SPIE 1362, 853 (1990).
  87. E. V. Beregulin, S. D. Ganichev, and I. D. Yaroshetski, Physical Concepts of Materials for Novel Opto-Electronic Device Applications II, ed. by F. Bertran and E. Gornik, Proc. SPIE 1985, 523 (1993).
  88. S. D. Ganichev, H. Ketterl, and W. Prettl, MRS Symp. Proc. 692 eds. E.D. Jones, M.O. Manasreh, K.D. Choquette, and D. Friedman, H4.3.1 (2002).