Excited Nucleon Resonances from the Lattice

XXV International Symposium on Lattice Field Theory
Regensburg, Germany

Adam C. Lichtl
RIKEN BNL Research Center
Brookhaven National Laboratory

Monday, July 30, 2007
Lattice Hadron Physics Collaboration

Members involved in this effort:
J. Bulava, R. Edwards, G.T. Fleming, B. Joó,
J. Juge, ACL, N. Mathur, C. Morningstar,
D. Richards, S. Wallace

Goal: To use the Monte Carlo method to calculate

- the low-lying spectrum of QCD hadron resonances
- form factors, structure functions, and other matrix elements
- hadron-hadron interactions
Two-point functions provide access the spectrum of the theory

\[C(\tau) \equiv \langle \mathcal{O}(\tau) \overline{\mathcal{O}}(0) \rangle \equiv \frac{1}{Z} \sum_{n=0}^{\infty} \langle n | e^{-(\beta-\tau)H} \mathcal{O} e^{-\tau H} \overline{\mathcal{O}} | n \rangle = \frac{1}{Z} \sum_{n=0}^{\infty} e^{-(\beta-\tau)E_n} \langle n | \mathcal{O} e^{-\tau H} \overline{\mathcal{O}} | n \rangle \]

For this work, take \(\beta \gg \tau \) to access zero-temperature physics

\[C(\tau) \overset{\beta \gg \tau}{\to} \langle 0 | \mathcal{O} e^{-\tau H} \overline{\mathcal{O}} | 0 \rangle \]
Insert a complete set of energy states to see the spectral structure

\[C(\tau) = \langle 0 | \mathcal{O} e^{-H\tau} \mathcal{O} | 0 \rangle \]

\[= \langle 0 | \mathcal{O} \sum_{k=0}^{\infty} |k\rangle \langle k| e^{-H\tau} \mathcal{O} | 0 \rangle \]

\[= \sum_{k=1}^{\infty} |\langle k| \mathcal{O} | 0 \rangle|^2 e^{-E_k \tau}, \quad \langle 0| \mathcal{O} | 0 \rangle = 0 \]

The goal of this work: extract the spectrum \(\{E_k\} \)
Overview

- Operator construction
 - Local versus extended operators
 - Quark field and gauge link smearing
 - Continuum spin identification (not discussed)

- Extracting excited resonances
 - The standard variational method
 - Variations on the variational method
 - Toy model

- Nucleon spectrum preliminary results

- Outlook and conclusions
Part I

Operator construction
Baryon constituents determine total angular momentum J

$$\vec{J} = \vec{S}_q + \vec{S}_g + \vec{L}$$

$J_{\text{max}} = 3/2$ for a localized operator with unexcited glue ($\vec{S}_g = \vec{L} = 0$)

Need displacements to access higher J quantum numbers ($5/2, 7/2, \ldots$)
<table>
<thead>
<tr>
<th>Operator type</th>
<th>Displacement indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Site</td>
<td>$i = j = k = 0$</td>
</tr>
<tr>
<td>Singly-Displaced</td>
<td>$i = j = 0, k \neq 0$</td>
</tr>
<tr>
<td>Doubly-Displaced-L</td>
<td>$i = 0, j = -k, k \neq 0$</td>
</tr>
<tr>
<td>Doubly-Displaced-I</td>
<td>$i = 0,</td>
</tr>
<tr>
<td>Triply-Displaced-T</td>
<td>$i = -j,</td>
</tr>
</tbody>
</table>
Quark field and gauge link smearing

- Quark field smearing damps out high frequency couplings
- Gauge link smearing damps out high frequency fluctuations
- Combining them gives good extended quark operators
Part II

Extracting excited resonances
The variational method

- Trial basis of trial vectors \(\{ |\phi_a\rangle \} \) defines a subspace

\[
|\psi\rangle = |\phi_a\rangle v_a \quad \text{(sum over repeated indices implied)}
\]

- Let \(f(\psi) \) be the expectation value of some Hermitian \(F \) w.r.t. \(|\psi\rangle \)

\[
f(\psi) \equiv \frac{\langle \psi | F | \psi \rangle}{\langle \psi | \psi \rangle}
\]

- The first-order variation with respect to the \(v_a \) gives

\[
\delta f(\psi) = 0 \leftrightarrow F_\parallel |\psi\rangle = f(\psi) |\psi\rangle,
\]

where \(F_\parallel \) is the restriction of \(F \) to the subspace spanned by the \(\{ |\phi_a\rangle \} \)
Using the variational method to extract excited states

- Instead of one operator \overline{O}, use a \textit{basis} of operators $\{\overline{O}_a\}$ to define a \textit{correlator matrix}

$$C(\tau) \equiv \langle 0 | \overline{O}_a e^{-H\tau} \overline{O}_b | 0 \rangle$$

- We may formally define several variational bases parameterized by a reference time τ_0

$$|O_a(\tau_0)\rangle \equiv e^{-H\tau_0/2} \overline{O}_a |0\rangle, \quad |\Theta(\tau_0)\rangle \equiv |O_a(\tau_0)\rangle v_a$$

- To diagonalize the transfer matrix within the subspace, find the extremum of

$$\frac{\langle \Theta(\tau_0) | e^{-H(\tau-\tau_0)} | \Theta(\tau_0) \rangle}{\langle \Theta(\tau_0) | \Theta(\tau_0) \rangle} = \frac{v^\dagger C(\tau) v}{v^\dagger C(\tau_0) v}$$
Generalized eigenvalue problem

○ We may find the extrema of

\[\frac{v^\dagger C(\tau)v}{v^\dagger C(\tau_0)v} \]

○ By solving the generalized Hermitian eigenvalue problem:

\[C(\tau)v = \lambda C(\tau_0)v, \]

or

\[C^{-1/2}(\tau_0)C(\tau)C^{-1/2}(\tau_0)u = \lambda u, \quad u \equiv C^{1/2}(\tau_0)v. \]

○ The different solutions \(\lambda(\tau) \) are called \textit{principal correlators}, and each is asymptotically dominated by a unique energy level \(E_k \).

○ This requires good estimates of the elements of \(C(\tau_0) \) and \(C(\tau) \).
For fixed t_0, the different solutions asymptote in t to orthogonal levels.

Consider a toy theory with three energy states.

Use two operators to form the correlator matrix.

Effective mass results:

Original operators

Principal correlators

A. C. Lichtl (RBRC-BNL)

Excited Nucleon Resonances

Monday, July 30, 2007
Choosing t_0

- Physically τ_0 determines how much we ‘relax’ our basis onto the lower-lying states

$$|\mathcal{O}_a(\tau_0)\rangle \equiv e^{-H\tau_0/2}O_a|0\rangle = \sum_k |k\rangle c_k a e^{-E_k\tau_0/2}$$

- At early times, the basis will suffer from excited state contamination
- At late times, the basis will be ambiguous due to a poor signal-to-noise ratio
Choosing t_0 and t

- **A:** fix t_0 and find solutions $\{|\Theta\rangle\}$ for all possible t to define principal correlators (Lüscher-Wolff)
 - **Pro:** Maintains orthogonality at all t
 - **Con:** Must stop at t_{max} where noise begins to dominate

- **B:** fix both t_0 and t to define fixed-coefficient correlators (ACL)
 - **Pro:** Can extend fit range further
 - **Con:** Lose orthogonality, more suitable to precondition a matrix fit

- **C:** vary both t_0 and t and look at estimates of $e^{-H(\tau-t_0)}$
 - **Pro:** Uses much more information from the correlation matrix
 - **Con:** In progress
Part III

Nucleon spectrum preliminary results
Description of calculation

Stage 1) Exploratory study:

- Objective: refine operator design method, demonstrate feasibility of variational method
- Anisotropic lattice: $\frac{a_T}{a_s} = 3.0$
- Lattice spacing $a_s = 0.1$ fm
- Lattice extent: $12^3 \times 48$
- Spatial volume 1.2 fm
- Pion mass: $m_\pi = 700$
- Quenched
Principal versus fixed-coefficient correlators

- Principal correlators (red) break down at early times
- Fixed-coefficient correlators (green) show little instability
- Degenerate levels may be suspect due to lack of orthogonality
- Fits are in blue
Nucleons: Comparison with experiment

Nucleon Mass Spectrum (Exp)
Nucleons: Comparison with experiment

Nucleon Mass Spectrum (Exp)

Nucleon Mass Spectrum (n_f=0)
Part IV

Outlook and conclusions
Outlook

- Direct fits to the correlators (principal or fixed-coefficient) appear suspect due to contamination effects and signal-to-noise ratio issues (the situation is even worse when dynamical quarks are included).

- Should perform a *truncated matrix fit* of the form:

\[
C_{ab}^{(\text{fit})}(\tau) = \sum_{k=1}^{D} c_{ka}^* c_{kb} e^{-E_k \tau}
\]

- Can precondition using the fixed-coefficient solution by rotating \(C(\tau) \).

- Alternatively, attempt to extract information by varying both \(\tau_0 \) and \(\tau \).
Conclusions

- A quantitative look at the excited QCD spectrum is nearly in reach
- This long-term effort requires careful operator design and sophisticated analysis techniques
- Ongoing work:
 - Validate method in two-flavor sector at two pion masses and two volumes
 - High-statistics runs using three dynamical quark flavors
 - Volume studies to identify single versus multi-particle states

Any Questions?