Charm properties in the quark–gluon plasma

Jon-Ivar Skullerud

Trinity College Dublin

Lattice 2007, Regensburg, 30 July–4 August 2007
Outline

Background
 Spectral functions
 QCD with 2 light quarks

Results
 Reconstructed correlators
 MEM systematics
 Temperature dependence

Summary and outlook
Background
Background

- J/ψ suppression — a probe of the quark–gluon plasma?
- Quenched lattice results indicate that S-waves survive well into the plasma phase
- Sequential charmonium suppression + recombination explains experimental results?
- Uncertainty about which potential to use in potential models, how to treat continuum
- How reliable are quenched lattice simulations?
Quenched vs dynamical

Are quenched lattice results reliable?

- \(T_{c}^{N_f=0} = 270 \text{MeV} \), \(T_{c}^{N_f=2} \approx 180 \text{MeV} \), \(T_{c}^{N_f=2+1} \approx 170 \text{MeV} \)
- Light quarks can catalyse \(Q \bar{Q} \) dissociation so it occurs at lower temperature
- Lower \(T_c \), lower \(T_d \) — conspire to give the same \(T_d/T_c \)?
- Potential models indicate little change in \(T_d/T_c \)
Quenched vs dynamical

Are quenched lattice results reliable?

- $T_{c}^{N_{f}=0} = 270\text{MeV}$, $T_{c}^{N_{f}=2} \approx 180\text{MeV}$, $T_{c}^{N_{f}=2+1} \approx 170\text{MeV}$
- Light quarks can catalyse $Q\bar{Q}$ dissociation so it occurs at lower temperature
- Lower T_{c}, lower T_{d} — conspire to give the same T_{d}/T_{c}?
- Potential models indicate little change in T_{d}/T_{c}
- Only dynamical lattice calculations can give the answer
Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $O(10)$ points $\Rightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t$!
Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t$!
- Independent handle on temperature
Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t$!
- Independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem [PRD 74 014505 (2006)]
Spectral functions

- contain information about the fate of hadrons in the medium
 - stable states $\rho(\omega) \sim \delta(\omega - m)$
 - resonances or thermal width $\rho(\omega) \sim$ Lorentzian...
 - continuum above threshold

- can be used to extract transport coefficients
Spectral functions

- contain information about the fate of hadrons in the medium
 - stable states $\rho(\omega) \sim \delta(\omega - m)$
 - resonances or thermal width $\rho(\omega) \sim$ Lorentzian...
 - continuum above threshold

- can be used to extract transport coefficients

- $\rho_\Gamma(\omega, \vec{p})$ related to euclidean correlator $G_\Gamma(\tau, \vec{p})$ according to

\[
G_\Gamma(\tau, \vec{p}) = \int \rho_\Gamma(\omega, \vec{p}) \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} d\omega
\]

- an ill-posed problem — requires a large number of time slices
- use Maximum Entropy Method to determine most likely $\rho(\omega)$
Simulation parameters

[arXiv:0705.2198]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light quarks</td>
<td>m_π/m_ρ</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>ξ</td>
</tr>
<tr>
<td>Lattice spacing</td>
<td>a_τ</td>
</tr>
<tr>
<td></td>
<td>a_s</td>
</tr>
<tr>
<td>Lattice volume</td>
<td>N_s^3</td>
</tr>
<tr>
<td>Critical Temp</td>
<td>T_c</td>
</tr>
<tr>
<td>1/Temperature</td>
<td>N_τ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reconstructed correlators

We use $N_{\tau} = 32$ as our reference temperature
Reconstructed correlators

![Graph showing reconstructed correlators](image)

- **χ_{c0}**
- **χ_{c1}**

Parameters:
- $N_t = 33$
- $N_t = 31$
- $N_t = 30$
- $N_t = 29$
- $N_t = 28$
- $N_t = 24$
MEM systematics

\[\eta_c \]
\[m = 0.117 \]
MEM systematics

\[\rho(\omega) \]

\[\omega \text{ (GeV)} \]

\[m(\omega) = 0.3\omega^2 \]

\[m(\omega) = 8.0\omega^2 \]

\[m(\omega) = 80\omega^2 \]

\[m(\omega) = 1.0(\omega+\omega^2) \]

\[m(\omega) = 12.0(\omega+\omega^2) \]

\[m(\omega) = 0.0064 \]

\[m(\omega) = 0.248\omega \]
Statistics

\[\eta_c \]

\[m = 0.117 \]
Using $m_0 = 16$ — third peak appears for high statistics??
P-wave systematics

\[\chi_{c1} \]

\[m = 0.092 \]
Systematics at $N_\tau = 24$

\[\eta_c \quad m = 0.117 \]
Systematics at $N_\tau = 24$

![Graph showing the correlation functions with different mass terms](image)

- η_c
 - $m = 0.092$

Graph parameters:
- $m(\omega) = 0.3\omega^2$
- $m(\omega) = 8.0\omega^2$
- $m(\omega) = 80\omega^2$
- $m(\omega) = 2.0(\omega + \omega^2)$
- $m(\omega) = 20(\omega + \omega^2)$
- $m(\omega) = 0.0324$
- $m(\omega) = 0.9564\omega$
S-wave T dependence (η_c)
S-wave T dependence (η_c)

\[\eta_c \]

\[m = 0.092 \]
S-wave T dependence (η_c)
S-wave T dependence (J/ψ)

J/ψ (S-wave) melts at $T > 400$ MeV or $2T_c$?
S-wave T dependence (J/ψ)

J/ψ (S-wave) melts at $T > 400$ MeV or $2T_c$?
P-waves melt at $T < 250 \text{ MeV}$ or $1.2 T_c$?
Outlook
Outlook

▶ Charm flow
 → Diffusion constant related to \(\lim_{\omega \to 0} \frac{\rho \nu(\omega)}{\omega} \)
 → Can this be determined using MEM?
 → Use \(m(\omega) = m_0 \omega (b + \omega) \), vary \(b \)
Outlook

- **Charm flow**
 - Diffusion constant related to $\lim_{\omega \to 0} \rho_V(\omega)/\omega$
 - Can this be determined using MEM?
 - Use $m(\omega) = m_0\omega(b + \omega)$, vary b

- **Nonzero momentum**
 - Charmonium is produced at nonzero momentum
 - Transverse momentum (and rapidity) distributions important to distinguish between models
 - Momentum dependent binding?
 - Gives an additional window to transport properties
 - Simulations getting underway
Outlook

▶ Charm flow
 → Diffusion constant related to \(\lim_{\omega \to 0} \rho V(\omega)/\omega \)
 → Can this be determined using MEM?
 → Use \(m(\omega) = m_0 \omega (b + \omega) \), vary \(b \)

▶ Nonzero momentum
 → Charmonium is produced at nonzero momentum
 → Transverse momentum (and rapidity) distributions important to distinguish between models
 → Momentum dependent binding?
 → Gives an additional window to transport properties
 → Simulations getting underway

▶ \(D \) and \(B \) mesons

▶ non-zero chemical potential

▶
Summary
Summary

- Charmonium S-waves survive to $T \sim 2T_c$
- P-waves melt at $T < 1.3T_c$
- Consistent with sequential suppression:
 - 60% of J/ψ production is direct, the rest is feed-down from ψ', χ_c
 - Observed suppression at SPS, RHIC is feed-down
 - Direct suppression not yet observed — may be seen at ALICE?
- Charmonium regeneration complicates picture!
- Systematic uncertainties:
 - Dependence on default model?
 - Coarse lattice \rightarrow doubler peak uncomfortably close
 - Cannot distinguish bound state vs threshold
 - Coarse lattice \rightarrow hard to reach high temperatures
- Simulations on finer lattices planned
- Simulations with lighter sea quarks in preparation