The phase structure of a chirally invariant Higgs-Yukawa model

Lattice Conference 2007
Regensburg, 03-Aug. 07

Philipp Gerholda
Karl Jansenb

aHumboldt-Universität zu Berlin
bNIC, DESY (Zeuthen)
Organization of the talk

- 1. Introduction and motivation
- 2. Phase structure at weak Yukawa coupling
 → Analytical large N_f-limit vs. Numerical results
- 3. Phase structure at strong Yukawa coupling
 → Analytical large N_f-limit vs. Numerical results
- 4. Preliminary results on upper Higgs mass bound
- 5. Outlook
Organization of the talk

1. Introduction and motivation
2. Phase structure at weak Yukawa coupling
 → Analytical large N_f-limit vs. Numerical results
3. Phase structure at strong Yukawa coupling
 → Analytical large N_f-limit vs. Numerical results
4. Preliminary results on upper Higgs mass bound
5. Outlook

Results published in

<table>
<thead>
<tr>
<th>arXiv: 0705:2539</th>
<th>See also Lattice-Talks by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Julius Kuti</td>
</tr>
<tr>
<td>arXiv: 0707:3849</td>
<td>Kieran Holland</td>
</tr>
<tr>
<td></td>
<td>Daniel Nogradi</td>
</tr>
</tbody>
</table>
1.1 Introduction and motivation

- LHC will explore Higgs sector soon.
 - Theoretical predictions on Higgs properties are of particular interest now.
- Available theo. Higgs mass bounds depend strongly on perturbation theory.
 - Concerns that at least lower bound, based on vacuum instability, is fake (Kuti, Holland)
- Non-perturbative determination of Higgs mass bounds desired.
 - Study pure Top-Higgs sector with Higgs-Yukawa models.
- Earlier Higgs-Yukawa models explicitly broke chiral symmetry.
 - In continuum limit chiral symmetry restoration and lifting of fermion doublers could not be achieved simultaneously.

Study Higgs-Yukawa model with built-in chiral symmetry.
1.2 The model

- A chirally invariant $SU(2)_L \times SU(2)_R$ Higgs-Yukawa model can be constructed using the Neuberger overlap operator $D^{(N)}$ (Lüscher).
- The model, we consider, is discretized on a four-dimensional lattice with L sites per dimension (volume $V = L^4$).
- It contains one four-component, real Higgs field Φ, and N_f fermion doublets $\psi^{(i)}$, but no gauge fields:

$$Z = \int D\Phi \prod_{i=1}^{N_f} \left[D\psi^{(i)} D\bar{\psi}^{(i)} \right] \exp \left(-S_{F}^{kin} - S_Y - S_\Phi \right)$$

with kinetic fermion action S_{F}^{kin}, Yukawa coupling term S_Y, and Higgs action S_Φ.
1.2 The model

- A chirally invariant $SU(2)_L \times SU(2)_R$ Higgs-Yukawa model can be constructed using the Neuberger overlap operator $D^{(N)}$ (Lüscher).
- The model, we consider, is discretized on a four-dimensional lattice with L sites per dimension (volume $V = L^4$).
- It contains one four-component, real Higgs field Φ, and N_f fermion doublets $\psi^{(i)}$, but no gauge fields:

$$Z = \int D\Phi \prod_{i=1}^{N_f} \left[D\psi^{(i)} D\bar{\psi}^{(i)} \right] \exp \left(-S_F^{kin} - S_Y - S_\Phi \right)$$

with kinetic fermion action S_F^{kin}, Yukawa coupling term S_Y, and Higgs action S_Φ.
- Kinetic fermion action:

$$S_F^{kin} = \sum_{i=1}^{N_f} \bar{\psi}^{(i)} D^{(N)} \psi^{(i)}$$
1.3 The model

- The Yukawa coupling term is given as

\[
S_Y = y_N \sum_{i=1}^{N_f} \bar{\psi}^{(i)} B \cdot \left[1 - \frac{1}{2\rho} D^{(N)} \right] \psi^{(i)}
\]

\[
B_{x,y} = 1_{x,y} \frac{(1 - \gamma_5)}{2} \phi_x + 1_{x,y} \frac{(1 + \gamma_5)}{2} \phi_x^\dagger
\]

where the Higgs field \(\Phi_x \) is written as quaternion \(\phi_x \) acting on flavor index

\[
\phi_x = \Phi_x^0 1 - i(\Phi_x^1 \tau_1 + \Phi_x^2 \tau_2 + \Phi_x^3 \tau_3), \quad \tau_i : \text{Pauli-matrices.}
\]
1.3 The model

- The Yukawa coupling term is given as

\[S_Y = y_N \sum_{i=1}^{N_f} \bar{\psi}^{(i)} B \cdot \left[1 - \frac{1}{2\rho} D(N) \right] \psi^{(i)} \]

\[B_{x,y} = \mathbb{1}_{x,y} \frac{(1 - \gamma_5)}{2} \phi_x + \mathbb{1}_{x,y} \frac{(1 + \gamma_5)}{2} \phi_x^\dagger \]

where the Higgs field \(\Phi_x \) is written as quaternion \(\phi_x \) acting on flavor index

\[\phi_x = \Phi_x^0 \mathbb{1} - i(\Phi_x^1 \tau_1 + \Phi_x^2 \tau_2 + \Phi_x^3 \tau_3), \quad \tau_i : \text{Pauli-matrices}. \]

- The Higgs action \(S_\Phi \) in lattice notation is

\[S_\Phi = -\kappa_N \sum_{x,\mu} \Phi_x^\dagger [\Phi_x + \mu + \Phi_{x-\mu}] + \sum_x \Phi_x^\dagger \Phi_x + \lambda_N \sum_x \left(\Phi_x^\dagger \Phi_x - N_f \right)^2 \]

related to usual notation by transforming couplings \((\kappa_N, \lambda_N) \leftrightarrow (\kappa, \lambda)\).
2.1 Phase structure at small y_N

- We consider the limit $N_f \to \infty$ where the couplings scale according to

$$y_N = \frac{\tilde{y}_N}{\sqrt{N_f}}, \quad \tilde{y}_N = \text{const} \quad \lambda_N = \frac{\tilde{\lambda}_N}{N_f}, \quad \tilde{\lambda}_N = \text{const} \quad \kappa_N = \tilde{\kappa}_N, \quad \tilde{\kappa}_N = \text{const}$$

- The effective action

$$S_{\text{eff}}[\Phi] = S_\Phi[\Phi] - N_f \cdot \log \left[\det \left(y_N B \mathcal{D}^{(N)} - 2\rho \mathcal{D}^{(N)} - 2\rho B \right) \right]$$

can be evaluated at least for the constant and staggered modes of Φ.

- For the Higgs field we take a magnetization (m) and a staggered magnetization (s) into account by the ansatz

$$\Phi(x) = \hat{\Phi} \cdot \sqrt{N_f} \cdot \left(m + s \cdot (-1)^{\sum_{\mu=0}^{3} x_\mu} \right)$$

where $\hat{\Phi} \in \mathbb{R}^4$, $|\hat{\Phi}| = 1$ is a constant unit vector and $m, s \in \mathbb{R}$.
2.2 Effective Potential

- At tree-level one finally finds for the effective potential \(V(m, s) \)

\[
\frac{V(m, s)}{L^4 N_f} = m^2 + s^2 - 8\tilde{\kappa}_N \left(m^2 - s^2 \right) + \tilde{\lambda}_N \left(m^4 + s^4 + 6m^2s^2 - 2 \left(m^2 + s^2 \right) \right)
\]

\[
- \frac{1}{L^4} \sum_{p \in \mathcal{P}} \log \left[\left| \nu^+(p) \right| \left| \nu^+(\varphi) \right| + \frac{\tilde{y}_N^2}{4\rho^2} \left(m^2 - s^2 \right) \left| \nu^+(p) - 2\rho \right| \left| \nu^+(\varphi) - 2\rho \right| \right]^2
\]

\[
+ m^2 \frac{\tilde{y}_N^2}{4\rho^2} \left(\left| \nu^+(p) - 2\rho \right| \left| \nu^+(\varphi) \right| - \left| \nu^+(\varphi) - 2\rho \right| \cdot \left| \nu^+(p) \right| \right)^2 \right] \right]^2
\]

with

\[
p = (p_0, p_1, p_2, p_3) \in \mathcal{P} : \text{allowed lattice momenta} \\
\nu(p) : \text{eigenvalues of Neuberger Dirac operator } \hat{D}^{(N)} \\
\varphi_\mu = p_\mu + \pi
\]

- The phase diagram can be explored by numerically searching for the absolute minima of the effective action with respect to \(m \) and \(s \).
2.3 Analytical phase diagrams

In general, four different phases can be obtained in this ansatz:

- **SYM**: \(m = 0, s = 0 \)
- **FM**: \(m \neq 0, s = 0 \)
- **AFM**: \(m = 0, s \neq 0 \)
- **FI**: \(m \neq 0, s \neq 0 \)
2.4 MC-simulations: Definitions

- We have implemented an HMC-algorithm for even values of N_f
2.4 MC-simulations: Definitions

- We have implemented an HMC-algorithm for even values of N_f
- As observables we consider the (staggered) magnetization m (s)

$$m = \left[\sum_{i=0}^{3} \left| \frac{1}{L^4} \sum_{n} \Phi_i^n \right|^2 \right]^{\frac{1}{2}}, \quad s = \left[\sum_{i=0}^{3} \left| \frac{1}{L^4} \sum_{n} (-1)^{n\mu} \cdot \Phi_i^n \right|^2 \right]^{\frac{1}{2}}$$

and the corresponding (staggered) susceptibility χ_m (χ_s)

$$\chi_m = L^4 \cdot [\langle m^2 \rangle - \langle m \rangle^2], \quad \chi_s = L^4 \cdot [\langle s^2 \rangle - \langle s \rangle^2],$$

where $\langle \ldots \rangle$ denotes the average over the generated Φ-field configurations.
2.4 MC-simulations: Definitions

- We have implemented an HMC-algorithm for even values of \(N_f \).
- As observables we consider the (staggered) magnetization \(m \) (\(s \))

\[
m = \left[\sum_{i=0}^{3} \left| \frac{1}{L^4} \sum_n \Phi_n^i \right|^2 \right]^{\frac{1}{2}}, \quad s = \left[\sum_{i=0}^{3} \left| \frac{1}{L^4} \sum_n (-1)^{\mu} \Phi_n^i \right|^2 \right]^{\frac{1}{2}}
\]

and the corresponding (staggered) susceptibility \(\chi_m \) (\(\chi_s \))

\[
\chi_m = L^4 \cdot \left[\langle m^2 \rangle - \langle m \rangle^2 \right], \quad \chi_s = L^4 \cdot \left[\langle s^2 \rangle - \langle s \rangle^2 \right],
\]

where \(\langle \ldots \rangle \) denotes the average over the generated \(\Phi \)-field configurations.
- Determine phase transition point by fit of \(\chi_{m,s} \) to finite-size-scaling ansatz

\[
\chi_{m,s} = A_{1}^{m,s} \cdot \left(\frac{1}{L^{-2/\nu} + A_{2,3}^{m,s} (\kappa N - \kappa_{\text{crit}})^2} \right)^{\gamma/2},
\]

with fitting parameters \(\kappa_{\text{crit}}^{m,s}, A_{1}^{m,s}, A_{2}^{m,s}, A_{3}^{m,s} \).
2.5 Phase structure overview

- Numerically we find the expected phases at the predicted locations.
- Qualitatively, the phase diagram is in very good agreement with the large N_f analysis.

\[
\tilde{\lambda}_N = 0.1, N_f = 10
\]

![Phase structure diagram](image)
2.6 Finite Size Effects

- Phase transition lines strongly shifted by finite size effects.
- We isolate finite size effects from $1/N_f$-corrections by choice $N_f = 50$.
- We compare $L = 4$ and $L = 8$ results with analytical finite size expectations.
2.7 $1/N_f$ corrections

- We demonstrate strength of $1/N_f$-corrections by determining phase transition points $\kappa_{\text{crit}}^{m,s}$ for several values of N_f.
- To isolate $1/N_f$-corrections from finite size effects we compare with analytical, finite size expectations.

\begin{align*}
\tilde{y}_N &= 1.0, \tilde{\lambda}_N = 0.1 \\
\tilde{y}_N &= 2.0, \tilde{\lambda}_N = 0.1
\end{align*}
3.1 Phase structure at large y_N

- Idea: Divide out $y_N B(D^{(N)} - 2\rho)$ and develop logarithm into power series

$$S_{eff}[\Phi] = S_\Phi - N_f \cdot \log \left[\det \left(y_N B D^{(N)} - 2\rho D^{(N)} - 2\rho B \right) \right]$$
3.1 Phase structure at large y_N

- Idea: Divide out $y_N B (D^{(N)} - 2\rho)$ and develop logarithm into power series

\[
S_{\text{eff}}[\Phi] = S_{\Phi} - N_f \cdot \log \left[\det \left(y_N B D^{(N)} - 2\rho D^{(N)} - 2\rho B \right) \right]
\]
\[
\rightarrow S_{\Phi} - N_f \cdot \log \left[\det \left(1 - \frac{2\rho}{y_N} D^{(N)} \left[D^{(N)} - 2\rho \right]^{-1} B^{-1} \right) \right]
\]
\[
\rightarrow S_{\Phi} - N_f \sum_x \log(|\Phi_x|^8) - N_f \frac{(4\rho)^2}{y_N^2} \sum_{x,y} \frac{\Phi_x^\dagger K_{x,y} \Phi_y}{|\Phi_x|^2 \cdot |\Phi_y|^2}
\]

where the coupling matrix $K_{x,y}$ is explicitly known.
3.1 Phase structure at large y_N

- **Idea:** Divide out $y_N B(D^{(N)} - 2\rho)$ and develop logarithm into power series

\[
S_{\text{eff}}[\Phi] = S_\Phi - N_f \cdot \log \left[\det \left(y_N B D^{(N)} - 2\rho D^{(N)} - 2\rho B \right) \right]
\]

\[
\rightarrow S_\Phi - N_f \cdot \log \left[\det \left(1 - \frac{2\rho}{y_N} D^{(N)} \left[D^{(N)} - 2\rho \right]^{-1} B^{-1} \right) \right]
\]

\[
\rightarrow S_\Phi - N_f \sum_x \log(|\Phi_x|^8) - N_f \left(\frac{4\rho}{y_N^2} \right)^2 \sum_{x,y} \frac{\Phi_x^\dagger K_{x,y} \Phi_y}{|\Phi_x|^2 \cdot |\Phi_y|^2}
\]

where the coupling matrix $K_{x,y}$ is explicitly known.

- In large N_f-limit amplitude $|\Phi_x|$ becomes fixed.

The model becomes an $O(4)$-symmetric sigma-model leading to the existence of a symmetric phase at strong Yukawa couplings.
3.1 Phase structure at large y_N

- **Idea:** Divide out $y_N B(D^{(N)} - 2\rho)$ and develop logarithm into power series

$$S_{eff}[\Phi] = S_\Phi - N_f \cdot \log \left[\det \left(y_N B D^{(N)} - 2\rho D^{(N)} - 2\rho B \right) \right]$$

$$\rightarrow S_\Phi - N_f \cdot \log \left[\det \left(\mathbb{1} - \frac{2\rho}{y_N} D^{(N)} \left[D^{(N)} - 2\rho \right]^{-1} B^{-1} \right) \right]$$

$$\rightarrow S_\Phi - N_f \sum_x \log(|\Phi_x|^8) - N_f \frac{(4\rho)^2}{y_N^2} \sum_{x,y} \frac{\Phi_x^\dagger K_{x,y} \Phi_y}{|\Phi_x|^2 \cdot |\Phi_y|^2}$$

where the coupling matrix $K_{x,y}$ is explicitly known.

- **Caution:** $D^{(N)} - 2\rho$ has zero modes: More careful calculation yields

$$S_{eff}[\Phi] \rightarrow S_\Phi - N_f \sum_x \log(|\Phi_x|^8) - N_f \frac{(4\rho)^2}{y_N^2} \sum_{x,y} \frac{\Phi_x^\dagger K_{x,y} \Phi_y}{|\Phi_x|^2 \cdot |\Phi_y|^2}$$

$$- N_f \cdot \log \det^* \left(B^{-1} \right) - N_f \cdot \log \det^* \left(\mathbb{1} + \frac{2\rho}{y_N} F[\Phi] \right)$$

where \det^* is the determinant over zero-modes (120 modes) and $F[\Phi]$ can be explicitly given.
3.2 Analytical Phase Diagrams

- Neglecting the finite-volume terms, the phase structure can be derived in the large N_f-limit applying the ansatz

$$y_N = \tilde{y}_N, \quad \tilde{y}_N = \text{const}, \quad \lambda_N = \frac{\tilde{\lambda}_N}{N_f}, \quad \tilde{\lambda}_N = \text{const}, \quad \kappa_N = \frac{\tilde{\kappa}_N}{N_f}, \quad \tilde{\kappa}_N = \text{const},$$
3.3 MC-results: Magnetizations

- We show the (staggered) magnetization for varying κ_N at $\tilde{\lambda}_N = 0.1$, $\tilde{y}_N = 30$ for different lattice sizes.

- Strong finite volume effects prevent emergence of the symmetric phase on too small lattices and cause asymmetry in m and s.

![Graphs showing magnetizations for different lattice sizes](image-url)
3.3 MC-results: Magnetizations

- We show the (staggered) magnetization for varying κ_N at $\tilde{\lambda}_N = 0.1$, $\tilde{y}_N = 30$ for different lattice sizes.
- Strong finite volume effects prevent emergence of the symmetric phase on too small lattices and cause asymmetry in m and s.

\begin{align*}
V = 4^4 & \quad V = 8^4 & \quad V = 16^4
\end{align*}

- Strongest finite-volume contribution is $\log \det^* (B^{-1})$.
 It can be written in terms of m and s, explaining the observations

$$
-N_f \log \det^* (B^{-1}) = \text{Const} - 8N_f \log |m| + 64N_f \log |m^2 - s^2|
$$
3.4 MC-results: Susceptibilities

- We show the magnetic susceptibilities for varying κ_N at $\tilde{\lambda}_N = 0.1$, $\tilde{y}_N = 30$ for different lattice sizes.
- On small lattices ($V = 4^4$) the maximum is at $\kappa_N = 0$, caused by the finite-volume effects.
- On larger lattices ($V = 8^4$) a second peak develops at $\kappa_N = 0.04$, which describes the location of the physical phase transition.
3.5 Phase Diagram

- We compare numerical and analytical results for the SYM-FM transition line.
- Good agreement is found even at $N_f = 2$.
- The SYM-AFM phase transition line was numerically too demanding for our HMC-algorithm.

![Phase Diagram](image)
4.1 Towards Upper Mass Bounds:

- VERY PRELIMINARY
- To access physical setting $N_f = 1$, we implemented a PHMC-algorithm.
- We fixed physical scale by phenomenological value $vev = 246$ GeV.
- We searched for the physical region in the phase diagram by fixing the top quark mass to $m_{top} = 175$ GeV.
- To obtain upper mass bound, we went to strong quartic couplings λ_N.
- As a first step, we simulated the model on a $16^3 \times 32$ lattice close to the phase transition in the FM-phase.
- To account for the 3 Goldstone-modes we split the 4-component Higgs field into its radial ϕ and tangential components $\vec{\pi}$.
4.2 Goldstone - Propagator:

- Obtain Goldstone renormalization factor Z_G from inverse propagator of massless Goldstone-modes

\[G^{-1}_\pi (\hat{p}^2) = \frac{\hat{p}^2}{Z_G} \]

\[Z_G = 0.9683 \pm 0.0002 \]
4.3 Higgs - Propagator:

- Obtain Higgs propagator-mass $m_{H,prop}$ from propagator of Higgs-mode

$$G^{-1}_\phi (\hat{p}^2) = \frac{\hat{p}^2 + m^2_{H,prop}}{Z_H}$$

$m_{H,prop} = 0.384 \pm 0.009$
4.4 Fermion correlator:

- Obtain top quark mass m_{top} from fermion correlator $\langle \psi_{t_1} \bar{\psi}_{t_2} \rangle$

$$m_{top} = 0.0686 \pm 0.0021$$
4.5 Higgs correlator:

- Obtain Higgs mass m_H from Higgs correlator $\langle \phi_{t_1} \phi_{t_2} \rangle$

\[
\langle \phi_{t_1} \phi_{t_2} \rangle
\]

\[
\Delta t = |t_2 - t_1|
\]

\[
m_H = 0.286 \pm 0.011
\]
4.5 Summary of results:

Cut-off Λ \hspace{2cm} (2591 ± 58) GeV
Top mass m_{top} \hspace{2cm} (178.8 ± 6.8) GeV
Higgs mass m_H \hspace{2cm} (741 ± 29) GeV
Higgs prop. mass $m_{H,prop}$ \hspace{2cm} (994 ± 22) GeV

Bare Lambda λ_0 \hspace{2cm} 4.4
Ren. Lambda λ_{ren} \hspace{2cm} 4.53 ± 0.18
Ren. y y_{ren} \hspace{2cm} 0.723 ± 0.027
Summary and Outlook

- Large N_f analysis gives good understanding of qualitative phase structure.
- Finite size effects can be quantitatively described in large N_f-limit.
- A symmetric phase exists also at strong Yukawa coupling.
- First results on upper Higgs mass bound will become available soon.
- We will investigate the model at larger cut-offs and on larger lattices.
Evidence for FI-phase

• Also numerical evidence for the predicted FI-phase with

\[\langle m \rangle > 0 \text{ and } \langle s \rangle > 0 \]

depth inside the anti-ferromagnetic phase can be found.

• The plots were made for \(\tilde{\lambda}_N = 0.1, N_f = 10, L = 6 \).
Finite Size Effects

Magnetizations

Susceptibility χ_m

The phase structure of a chirally invariant Higgs-Yukawa model – p.26/26