On the structure of QCD confining string

[a remark on the non-perturbative short distance physics]

F. Gubarev, P. Boyko, S. Morozov [ITEP]

arXiv:0704.1203v1[hep-lat]
Introduction

There are accumulating evidences that short distance physics of YM fields is **not exhausted** by perturbation theory:

- Quadratic power corrections seen in high energy processes. [Zakharov’99]
- Ultraviolet renormalons (higher orders of perturbation theory). [Zakharov’92]
- “Fine tuning” of magnetic degrees of freedom (monopoles, vortices). [ITEP’01,02]
- Lower dimensionality of fermionic (near) zero modes. [Horvath’03, MILC’04, ITEP’05]

The common point is the explicit power-like mixing of InfraRed (IR) Λ_{QCD} and UltraViolet (UV) $1/a$ scales.
IR/UV “mixing” in vacuum action density

Convention prediction (OPE): \(s = \text{Tr} F_{\mu\nu}^2 \)

\[\langle s \rangle_0 = \frac{\alpha_0}{a^4} + \gamma_0 \Lambda_{QCD}^4 \] [up to logarithms]

However, it had long been discussed that this pattern is more involved [Burgio’97]

\[\langle s \rangle_0 = \frac{\alpha_0}{a^4} + \frac{\beta_0}{a^2} \Lambda_{QCD}^2 + \gamma_0 \Lambda_{QCD}^4 \]

and includes explicit IR/UV “mixing” term.
IR/UV “mixing” in vacuum action density

\[\langle s \rangle_0 \cdot a^2 \text{ versus } a^2 \]

Numerical subtraction of perturbative loops.

[ITEP’05]

Model dependent evaluation.

[ITEP’05]

The “mixing” term is known to be small

\[
SU(3) : \beta_0 \Lambda_{QCD}^2 \lesssim [40 \text{ MeV}]^2 ,
\]

\[
SU(2) : \beta_0 \Lambda_{QCD}^2 \lesssim [60 \text{ MeV}]^2 .
\]
Regardless of how small the “mixing” term is, it has rather dramatic consequences. Consider the difference:

\[\Delta s = \langle s \rangle_0 - \langle s \rangle_W = \]

\[= \langle s \rangle_0 - \lim_{T \to \infty} \frac{\langle s(h, r)W(R, T) \rangle_0}{\langle W(R, T) \rangle_0} \]

It follows that generically

\[\Delta s = \frac{\beta \Lambda_{QCD}^2}{a^2} + \gamma \Lambda_{QCD}^4. \]

[As expected, leading divergence vanishes, see below]
String Width

Rigorous action sum rules

\[\int d^3 x \Delta s = V(R) \quad \text{(up to logarithms)} \]

for \(R \gg \Lambda_{QCD}^{-1} \) allow to estimate squared string width \(\delta^2 \)

\[\delta^2 \propto \sigma \cdot [\beta \Lambda_{QCD}^2/a^2 + \gamma \Lambda_{QCD}^4]^{-1} \xrightarrow{a \to 0} 0 \quad [!] \]

Compare with effective string theory prediction:

- Gaussian profile

\[\Delta s(h = 0) = C(R) \exp\{-r^2/\delta^2(R)\} \]

- Infinitely long QCD string does not exist

\[\delta^2(R) = \frac{1}{\pi \sigma} \ln[R/R_0] \xrightarrow{R \to \infty} \infty \]
Parameters

We considered the following lattices

- Range of lattice spacings
 \[0.041(1) \text{ fm} \leq a \leq 0.104(1) \text{ fm} \]

- Physical volumes
 \[[1.5 \text{ fm}]^4 \lesssim V^{\text{phys}} \lesssim [2.5 \text{ fm}]^4 \]

generated with Wilson action. Standard tricks of APE smearing and multihit integration were used as well.
Ground state separation

Rigorous transfer matrix arguments imply (leading order):

\[\Delta s(h, r, R, T) = \Delta s(h, r, R) + c(h, r, R) \cdot e^{-m(R)T} \]

We insist that \(m \) is an unknown function of \(R \) only and make cumulative fit in finite \((h, r)\) region, where significant signal is expected.

This gives rather stable values of \(\Delta s(h, r, R) \), \(\chi^2/\text{n.d.f} \) being always in the range \([0.5 : 0.9]\).

Note: the gap parameter \(m(R) \) is not determined precisely (due to the smearing \(c(h, r, R) \) is rather small).
Transverse profile at $h = 0$

Transverse profile is Gaussian for $R \gtrsim 0.3$ fm, width increases with rising R.

$\beta = 2.600, \ 40^4$

![Graph showing transverse profile](graph.png)

- $R=0.50$ fm
- $R=0.62$ fm
- $R=0.74$ fm
- $R=0.87$ fm
- $R=0.99$ fm
On the structure of QCD confining string

Gubarev, Boyko, Morozov

Introduction
Vacuum action density
Setup
String Width

Numerical Simulations
Lattices used
Ground state separation

Transverse profile
String width
Quadratic divergence I

Direct Approach
Longitudinal slice
Quadratic divergence II

Summary

String width at $h = 0$

Squared string width $\delta^2(R)$ vs. R at various spacings.

Note the systematic drop of δ^2 for $a \lesssim 0.07$ fm
String widening with $R \to \infty$ (probably logarithmic) is observed [ok]

But this effect seems to be subleading: flux tube rapidly shrinks with $a \to 0$ [?!]

If this is caused by quadratic divergence $\beta \Lambda_{QCD}^2 / a^2$ then we could estimate its magnitude:

- Shrinkage starts at $a_{cr} \approx 0.07 \text{ fm}$
- Gluon condensate is roughly $\gamma \Lambda_{QCD}^4 \approx 0.02 \text{ GeV}^4$
- Hence

$$\beta \Lambda_{QCD}^2 \approx a_{cr}^2 \cdot \gamma \Lambda_{QCD}^4 \approx [50 \text{ MeV}]^2$$
On-axis \((r = 0)\) action density difference

Longitudinal \(r = 0\) slice (experimental finding) is best described by the Yukawa ansatz (\(T \to \infty\) limit already taken)

\[
\Delta s(h, R) = \Delta s + A \cdot e^{-MR/2} \cdot \cosh(Mh),
\]
which works nicely for all available data sets (\(\chi^2/n.d.f.\) is always in the range \([0.4 : 0.8]\)).
On-axis \((r = 0)\) action density difference

Sources separation \(R \approx 1.0\) fm.

\[\Delta s, \text{ GeV}^4\]

\[h, \text{ fm}\]

\(\beta = 2.45\)

\(\beta = 2.51\)

\(\beta = 2.55\)

\(\beta = 2.60\)

Note: data points are Y-shifted for readability.
Action density at the string center, $R \to \infty$

Plot of the product $a^2 \cdot \Delta s$ versus a^2.

![Graph showing the relationship between $a^2 \cdot \Delta s$ and a^2.]
Action density at the string center point certainly diverges quadratically in the continuum limit:

\[\Delta s = \frac{\beta \Lambda_{QCD}^2}{a^2} + \gamma \Lambda_{QCD}^4. \]

\[\beta \Lambda_{QCD}^2 = [25(2) \text{ MeV}]^2, \quad \gamma \Lambda_{QCD}^4 = 0.019(1) \text{ GeV}^4. \]

Compare with vacuum values

\[\beta_0 \Lambda_{QCD}^2 \lesssim [60 \text{ MeV}]^2 \quad \gamma_0 \Lambda_{QCD}^4 \approx 0.02 \text{ GeV}^4 \]

Hence the conventional gluon condensate vanishes on the string symmetry axis.

\[\gamma = \gamma_0 \]
String widening is seen at finite UV cutoff and is compatible with logarithmic law, however, this is a subleading effect.

Width of the confining string shrinks almost linearly and its action density quadratically diverges in the limit $a \to 0$, so that the observable heavy quark potential remains physical:

$$
\begin{align*}
\delta &\sim a \\
\Delta s &\sim a^{-2}
\end{align*}
\rightarrow \delta^2 \cdot \Delta s \approx \sigma = const.
$$
Heavy quark potential

There is no sign whatsoever of UV cutoff dependence.