2+1 flavor topological susceptibility from the asqtad action at 0.06 fm

1MILC Collaboration
University of the Pacific
Stockton, CA USA

LATTICE 2007
Regensberg, Germany
Outline

1. Full QCD Topological Susceptibility since 2001
 - An assignment from S. Dürr in 2001

2. MILC Asqtad Program: χ_{topo}
 - First MILC χ_{topo} Result 2003
 - Rooted Staggered Chiral Perturbation Theory
 - Billeter, DeTar, and Osborn: χ_{topo} from RSχPT

3. 2007 Methods and Results
 - Methods
 - Results
 - Caveats

4. Conclusions
For small m_q

$$\chi_{\text{topo}} \sim \frac{f^2 m^2}{2N_f}$$

Where’s the $m \to 0$ suppression in the data?

“...roughly consistent with each other, but follow theoretical expectations to a limited degree”
Data used for 2001 comparison:

- CP-PACS: Iwasaki action + Wilson clover fermions \((16^3 \times 32, 24^3 \times 48)\)
- UKQCD: Wilson gauge + Wilson clover fermions \((16^3 \times 32)\)
- SESAM/T\(\chi\)L: Wilson gauge and Wilson fermions \((16^3 \times 32, 24^3 \times 40)\)
- PISA: Wilson gauge + staggered fermions \((16^4)\)

Advances since 2001:

- Highly Improved Actions — 2+1 flavor full QCD
- Staggered Chiral Perturbation Theory
- Bigger Computers
MILC Improved Action Program

- Asqtad Action: $O(\alpha_s a^2)$ improved gauge and fermion actions
- Topological Charge via Boulder $F_{\mu\nu} \tilde{F}^{\mu\nu}$ and HYP Smearing

By 2003 — 2 lattice spacings: $a = 0.13$ and 0.09 fm

- $a \to 0$ extrapolation is essential
- Data compared to continuum χPT:

$$\chi_{\text{topo}} \sim \frac{f_\pi^2 m_\pi^2}{4(1 + m_{u,d}/2m_s)}$$

- 2 lattice spacings...
- Encouraging results

(Rooted) Staggered Chiral Perturbation Theory

Lee and Sharpe
—1 flavor × 4 tastes

Aubin and Bernard
—n_f flavors × 4 tastes, and
—n_f flavors × (4 tastes)$^{1/4}$

How to handle taste breaking effects at finite a.

![Graphs showing the relationship between $(m_x+m_y)r_1 \times (Z_m/Z_m^{\text{fine}})$ and $(f_{\pi} r_1)/\sqrt{2}$](image-url)
Billeter, DeTar, and Osborn: Anomaly couples to ϕ_{ol}

- From the **Rooted Staggered Chiral Lagrangian**

\[
\mathcal{L} = \frac{f_\pi^2}{8} \text{Tr}(\partial_\mu U^\dagger \partial U) + \sum C_i \mathcal{O}_i \\
- \frac{\mu f_\pi^2}{4} \text{Tr}[\mathcal{M}(U^\dagger + U)] + \frac{m_o^2}{2} \phi_{ol}^2 + \ldots
\]

- $\chi_{\text{topo}} = \frac{f_\pi^2 m_{\pi, l}^2}{1 + m_{\pi, l}^2/2m_{ss,l} + 3m_{\pi, l}^2/2m_o^2}$

- $\chi_{m \rightarrow 0} \sim \frac{f_\pi^2 m_{\pi, l}^2}{8}$

- $\chi_{m \rightarrow \infty} \sim \frac{f_\pi^2 m_o^2}{12} = 0.06/r_0^4$

Pion taste multiplet masses $m_{\pi, l}^2$ at fixed a, versus quark mass m_q

Lesson:

Use $m_{\pi, l}^2$ not m_{π}^2, Goldstone
Topological Susceptibility Measurements

- **Boulder extended** $F_{\mu\nu} \tilde{F}^{\mu\nu}$ definition

- Use 3 **HYP** Smoothing sweeps to find $q(r) = F_{\mu\nu} \tilde{F}^{\mu\nu}$

- Use $\langle Q^2 \rangle / V = \int dr \langle q(r) q(0) \rangle$

- **Fit long distance behavior** of $\langle q(r) q(0) \rangle$ to analytical form to $\eta + \eta'$ scalar propagator.
Long distance topological charge density correlator fit

Defining $C(r) = \langle q(r)q(0) \rangle$

$$\langle Q^2 \rangle / V = \sum_{r \leq r_c} C_{\text{meas}}(r) + \sum_{r > r_c} C_{\text{fit}}(r)$$

$$C_{\text{fit}}(r) = D(m_{\eta}, r) + D(m_{\eta'}, r)$$

$$D(m, r) = \frac{m}{4\pi^2 r} K_1(mr)$$
New Results from $a = 0.06$ fm $48^3 \times 144$ lattices

- Simultaneously Fit data at different lattice spacings and masses to $f(m, a)$

$$\frac{1}{\chi_{\text{topo}} r_0^4} = f(m^2 \pi, I, a)$$

$$= A_0 + (A_1 + A_2 a^2 + A_3 a^4) / m^2 \pi, I$$

- Continuum = $f(m, 0)$

- Compare with L.O. $2+1 + \infty$ RSχPT
Autocorrelation of Q

\begin{figure}
\centering
\includegraphics[width=\textwidth]{autocorr.png}
\caption{Autocorrelation of Q}
\end{figure}
Conclusions

- 2+1 flavor χ_{topo} quite consistent with $S\chi$PT

- 0.06 fm data already very close to continuum for small m_π, l

- 1/4 root method is supported, since continuum formula for χ_{topo} is quite sensitive to n_f and m_f