Surprises with the lattice index theorem

Roman Höllwieser
in coop. with Manfried Faber,
Urs Heller and Gerald Jordan

August 3, 2007

Center Vortices and Topology
Atiah-Singer Index Theorem
Methods to determine the Topological charge Q:

- Cooling for rough configurations...
- Without cooling for smooth configurations from $F\tilde{F}$
- Topology of Center Vortices
- From Zero-modes via Index Theorem
Center Vortices

P-Vortices: closed surfaces of quantised flux

\[d^2\sigma_{\mu\nu} = \epsilon_{ab} \frac{\partial \bar{x}_\mu}{\partial \sigma_a} \frac{\partial \bar{x}_\nu}{\partial \sigma_b} d^2\sigma \]

\[Q = \text{Topological winding number} \]
\[Q = \text{Self intersection number} \]

\[\rightarrow \text{Engelhardt, Reinhardt (2000)} \]

\[Q = -\frac{1}{16} \epsilon_{\mu\nu\alpha\beta} \int_S d^2\sigma_{\alpha\beta} \int_S d^2\sigma'_{\mu\nu} \delta^4(\bar{x}(\sigma) - \bar{x}(\sigma')) \]

one intersection contributes \(\pm \frac{1}{2} \)

Specify surface orientation!
Contributions to topological charge Q

vortex intersection

$4 \cdot 4 = 16$ contributions

$Q = \pm \frac{1}{2}$

1 contribution

$Q = \pm \frac{1}{32}$
contributions to topological charge

- intersections
- writhing points
Exact zero-modes and the Atiyah-Singer index theorem

- Topological charge:

\[Q := -\frac{N_f}{16\pi^2} \int d^4x \text{tr} (F_{\mu\nu} \tilde{F}_{\mu\nu}) \]

- Index theorem:

\[n_-, n_+ : \text{number of left-/right-handed zeromodes} \]

\[\text{ind } D[A] = n_- - n_+ = Q[A] \]
Localisation

Scalar density

\[\rho(x) = \sum_{c,d} |\vec{v}(x)_{cd}|^2, \]

c and d, color and Dirac indices

Chiral densities \(\rho_+(x) \) and \(\rho_-(x) \)

\[\rho_{\pm}(x) = \sum_{c,d} \bar{v}(x)^*_{cd} \frac{1 - \gamma^c_{5,d'}}{2} v(x)_{cd'}^2 \]
Analytical results

⇒ Reinhardt, Schroeder, Tok and Zhukovsky (2002)

Analytical calculations by the Tübingen group. Zero-modes peak at intersections of vortices.

Probability density of zero-mode in the background of four intersecting vortices.
Plane Vortices

Surprises with the lattice index theorem

Roman Höllwieser in coop. with Manfried Faber, Urs Heller and Gerald Jordan

Topology

Center

Vortices

Index theorem

Analytical results

Plane Vortices

Spherical Vortices

Conclusions

Surprises with the lattice index theorem

Roman Höllwieser in coop. with Manfried Faber, Urs Heller and Gerald Jordan

Geometry

Topological charge

Fermionic density

Index of the overlap operator: \(\text{ind } D \equiv 0 \)

Topological charge: \(Q = 0 \)

Conclusion: index theorem valid
Surprises with the lattice index theorem

Roman Höllwieser in coop. with Manfried Faber, Urs Heller and Gerald Jordan

Topology Center
Vortices

Index theorem
Analytical results
Plane Vortices
Spherical Vortices
Conclusions

Thick Spherical SU(2)-vortices, \(40^3 \times 2\)-lattice

\[
U_{\mu}(x^\nu) = \begin{cases}
\exp\{i\alpha(r)\frac{\vec{r}}{r}\sigma\}, & t = 1, \mu = 4 \\
1 & \text{else}
\end{cases}
\]

\[
L(\vec{r}) = \exp\{i\alpha(r)\frac{\vec{r}}{r}\vec{T}\} \quad \text{time-like Wilson lines}
\]

\[
1 - \frac{1}{2} \text{tr } U_\Box \leq 0.015
\]
Non-/Orientable Spherical Vortices

Orientation of the vortex surface assigned by abelian projection. Non-orientable vortex surface leads to monopole lines.
Orientable Spherical Vortices

- No intersection/writhing points
- Index of the overlap operator: \(\text{ind } D = 0 \)
- Topological charge before cooling: \(Q = 0 \)
- Topological charge after cooling: \(Q = 0 \)
Non-orientable Spherical Vortices

- No intersection/writhing points
- Index of the overlap operator: \(\text{ind } D = 1 \)
- Topological charge before cooling: \(\vec{E} \neq 0, \vec{B} = 0 \rightarrow Q = 0 \)
- Topological charge after cooling: \(Q = 1 \)
Non-orientable Spherical Vortex

- Index of overlap operator:

\[n_+ = 3, \quad n_- = 4 \quad \Rightarrow \quad \text{ind } D[A] = n_- - n_+ = 1 \]

Compare \(Q[A] = 0 \)
After non-periodic gauge transformations at $t=1$:

- **Index of overlap operator:**

 \[
 n_+ = 1, \quad n_- = 0 \quad \implies \quad \text{ind } D[A] = n_- - n_+ = -1
 \]

 Compare $Q[A] = 0$
Two Thick Spherical SU(2)-vortices, $40^3 \times 2$-lattice

One vortex at $t = 1$ and another at $t = 2$

$y = 7$, $t = 1$, $\chi = 0$, $n = 1 - 4$, $\max = 0.0000314321$ $y = 7$, $t = 1$, $\chi = 0$, $n = 5 - 5$, $\max = 0.00315628$

Polyakov loop

Index of overlap operator:

$n_+ = 3$, $n_- = 5$

$\text{ind } D[A] = n_- - n_+ = 2$

Compare $Q[A] = 0$
One vortex at $t = 1$ and another at $t = 2$

Index of overlap operator:

\[n_+ = 0, \quad n_- = 0 \quad \Rightarrow \quad \text{ind} \ D[A] = n_- - n_+ = 0 \]

Compare $Q[A] = 0$

Conclusion: lattice index theorem inapplicable?
Conclusions

- Index theorem fulfilled for U(1) vortices
- Index theorem puzzeling for SU(2) vortices

This is likely due to the discontinuous nature of U_t in the continuum limit, near the vortex center, as function of t.

For all those configurations, Overlap Fermions give the same topological charge as cooling.
Surprises with the lattice index theorem

Roman Höllwieser
in coop. with Manfried Faber, Urs Heller and Gerald Jordan

Thank you for your attention!

Questions?