Recent lattice calculation indicates that the sigma meson is mainly a tetraquark mesonium which exists when the quark mass is sufficiently light (i.e. $m_{\pi} < 300$ MeV). This motivates further phenomenological study where the tetraquark sigma meson could play an important role. In this talk, we present the study of the sigma meson contribution to the $\Delta I = 1/2$ rule in $K \rightarrow 2\pi$ decay, using quenched overlap fermions. The separation of the resonant sigma meson effect and that of two pion scattering states is discussed.