Higgs mechanism in five dimensional gauge theories

Magdalena Luz

University of Wuppertal
with F. Knechtli (Wuppertal U.) and N. Irges (Crete U.)

LATTICE 07, Regensburg
31 July 2007

Outline

Gauge theories in extra dimensions
\(SU(N) \) on \(\mathbb{R}^4 \times S^1 / \mathbb{Z}_2 \)

What perturbation theory tells us
- Kaluza-Klein decomposition and mass eigenvalues
- the Coleman Weinberg potential at 'infinite cutoff'

Lattice simulations

Perturbation theory at finite cutoff
- the Coleman Weinberg potential revisited
- connection to lattice results

Conclusions and outlook
Gauge theories in extra dimensions

- **explain origin of the Higgs**: some of the extra dimensional components of the gauge field play the role of a fundamental scalar in 4d.

- Higgs potential is generated by quantum corrections. [Coleman, Weinberg, 1973; Hosotani, 1983]

- finiteness of the Higgs mass to all orders without SUSY.

- compact extra dimensions of size R, here: 4 + 1 d on S^1/\mathbb{Z}_2

- **triviality**, interactions only at finite cutoff.

Parameter space described by dimensionless quantities

$$N_5 = \pi R \Lambda, \quad \beta = \frac{2N}{g_5^2 \Lambda}.$$

\begin{center}
\begin{tikzpicture}
\fill[red] (0,0) circle (1pt) node[above left] {trivial point};
\fill[blue] (0,1) circle (1pt) node[below] {trivial point: $g_4^2 = \frac{N}{\beta N_5} \to 0$};
\fill[blue] (1,0) circle (1pt) node[above right] {Coulomb phase};
\fill[blue] (0,0) circle (1pt) node[below] {confined};
\fill[blue] (0,1) circle (1pt) node[above right] {Coulomb?};
\fill[blue] (1,0) circle (1pt) node[above] {trivial point?};
\draw[->] (0,0) -- (1,1); \\
\end{tikzpicture}
\end{center}
$SU(N)$ on $\mathbb{R}^4 \times S^1/\mathbb{Z}_2$

identify gauge fields related by the reflection $x_5 \to -x_5$

- two orbifold fixed points at $x_5 = 0$, $x_5 = \pi R \Rightarrow 4d$ boundaries
- identification up to gauge group conjugation by g: Dirichlet b.c.

\[
\begin{align*}
&gA_\mu g^{-1} = A_\mu \\
gA_5g^{-1} = -A_5
\end{align*}
\] \Rightarrow \quad g^2 \in \text{center of } SU(N)

breaking of gauge symmetry

- only even field components have zero modes

$SU(2) \to U(1) : (g = -i\sigma^3) \Rightarrow$ even fields:
$A_5^{1,2}$ "Higgs" and A_5^3 "Z"

$SU(3) \to SU(2) \times U(1) : (g = \text{diag}(1,1,-1)) \Rightarrow$ even fields:
$A_5^{4,5,6,7}$ "Higgs doublet" and $A_\mu^{1,2,3,8}$ "W^\pm, Z, photon"
What perturbation theory tells us
Kaluza-Klein decomposition and mass eigenvalues

- Expand fields in KK basis

\[
E(x,x_5) = \frac{1}{\sqrt{2\pi R}} E^{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} E^{(n)}(x) \cos(nx_5/R) \quad \text{even fields}
\]

\[
O(x,x_5) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} O^{(n)}(x) \sin(nx_5/R) \quad \text{odd fields.}
\]

- \(A_5\) is a scalar from 4 d point of view \(\Rightarrow\) can acquire a vev \(\langle A_5 \rangle \neq 0\).

We define

\[
\alpha = g_5 \langle A_5 \rangle R.
\]
Lagrangian and mass eigenvalues

\[\mathcal{L} = -\frac{1}{2g_5^2} \text{tr}\{F_{\mu\nu}F_{\mu\nu}\} - \frac{2}{2g_5^2} \text{tr}\{F_{\mu5}F_{\mu5}\} - \frac{1}{g_5^2 \xi} \text{tr}\{(\bar{D}_M A_M)\}^2 \]

where \(\bar{D}_M F = \partial_M F + [\langle A_M \rangle, F] \).

\(\Rightarrow \) mass operator \(\bar{D}_5 \bar{D}_5 \) for \(A_\mu \) and \(A_5 \) with the eigenvalues:

for \(SU(2) \) [Kubo, Lim, Yamashita, 2002]

- zero modes: \(A_\mu^{3,0} \) ('Z boson') \(m_Z R = \alpha \)
 \(A_5^{1,0} \) ('scalar') \(m_{A_5} R = \alpha, 0 \)

- higher modes: \((m_n R)^2 = \frac{n^2}{R^2}, \frac{(n\pm \alpha)^2}{R^2} \)
What perturbation theory tells us
Coleman Weinberg potential at 'infinite cutoff'

One loop potential in 4 d for scalar particle of mass M [Coleman, Weinberg, 1973]

$$\int D\phi e^{-S_E} \approx e^{-V} \equiv \det [\partial_\mu^2 + M^2]^{-\frac{1}{2}} \implies V = -\frac{1}{2} \sum_n \int \frac{dt}{t} \text{tr}\{e^{-t(m_n^2 + p^2)}\}$$

We sum over all KK mass states in V. After a Poisson resummation, we obtain for $SU(2)$

$$V = -\frac{9}{64\pi^6 R^4} \sum_{m=1}^{\infty} \frac{\cos(2\pi m\alpha)}{m^5} \quad \text{Minimum at } \alpha = 0 \mod \mathbb{Z}!$$

- gauge particle mass: $m_Z = 0$
- remnant $U(1)$ symmetry not broken!
- scalar mass: $(m_H R)^2 = \frac{N}{N_5 \beta} \frac{d^2 V}{d\alpha^2} \bigg|_{\alpha=\alpha_{\text{min}}} = g_4^2 \frac{9\zeta(3)}{16\pi^4} \bigg|_{\alpha=0} \to 0$

at trivial point where $g_4 \to 0$.

Is this true everywhere in the parameter space? No!

$$\Rightarrow$$ lattice simulations [Knechtli, Irges, 2006]
Lattice simulations

- Simulation of pure $SU(2) \rightarrow U(1)$ on $\frac{T}{a} \times \frac{L}{a}^3 \times N_5$ lattices. Periodic boundary conditions in 4 d, Dirichlet b.c. in $d = 5$, Wilson plaquette action.

- Compact geometry $N_5 \ll L/a, T/a$, here $T/a = 96, L/a = 12, N_5 = 6$

- massive Z contrary to CW result \Rightarrow SSB! Higgs phase.

- Higgs significantly heavier than suggested by 1-loop pt

- phase transition [Creutz, 1979] at $\beta_c = 1.607$, masses only for $\beta > \beta_c$.
describe lattice action by an effective lagrangean [Symanzik, 1981]

\[-\mathcal{L} = \frac{1}{2g_5^2} \text{tr}\{F_{MN}F_{MN}\} + \sum_{p_i} c^{(p_i)}(N_5, \beta) \ a^{p_i-4} \ \mathcal{O}^{(p_i)} + \ldots\]

with \(\mathcal{O}^{(p_i)}\) operators of dimension \(p_i > 4\).

\[c \ \mathcal{O}^{(6)} = \sum_{M,N} \frac{c}{2} \text{tr}\{F_{MN}(D_M^2 + D_N^2)F_{MN}\}, \quad c \equiv c^{(6)}(N_5, \beta) = \frac{1}{12} + \ldots\]

\[c_0 \ \mathcal{O}^{(5)} = \frac{\pi ac_0}{4} F_{5\mu} F_{5\mu} [\delta(x_5) + \delta(x_5 - \pi R)], \quad c_0 \equiv c^{(5)}(N_5, \beta)\]
Perturbation theory at finite cutoff
Coleman Weinberg potential revisited

\[c \mathcal{O}^{(6)} = \sum_{M,N} \frac{c}{2} \text{tr} \{ F_{MN} (D_M^2 + D_N^2) F_{MN} \}, \quad c \equiv c^{(6)}(N_5, \beta) = \frac{1}{12} + \ldots \]

\[c_0 \mathcal{O}^{(5)} = \frac{\pi a c_0}{4} \hat{F}_{5\mu} \hat{F}_{5\mu} [\delta(x_5) + \delta(x_5 - \pi R)], \quad c_0 \equiv c^{(5)}(N_5, \beta) \]

modified mass operator

\[\bar{D}_5 \bar{D}_5 + \frac{a^2}{12} (\bar{D}_5 \bar{D}_5)^2 \quad \text{boundary correction for gauge particle} \]

new eigenvalues (truncated at \(O(a^2), O(\frac{1}{n}) \))

zero mode \((m_{ZR})^2 = \alpha^2 + \frac{c_0 \alpha^2}{2} \frac{\pi}{N_5} + c \alpha^2 \frac{\pi^2}{N_5^2} \)

\[(m_{nR})^2 = n^2, \quad n > 0\]

\[= (n \pm \alpha)^2 + \frac{c_0 \alpha^2}{2} \frac{\pi}{N_5} + c(n \pm \alpha)^2 \frac{\pi^2}{N_5^2}, \quad n \geq 0 \]
Perturbation theory at finite cutoff
Coleman Weinberg potential revisited

$V_{\text{eff}}(c, c_0) = 13.00, c_0 = 0.0121$
$c = 0, c_0 = 0.0121$
$c = 13.00, c_0 = 0$
$c = c_0 = 0$

◮ $S^1(c_0 = 0)$, SSB occurs for $c > 1.72$, sharp transition of $\alpha_{\text{min}} \rightarrow \frac{1}{2}$
◮ orbifold: periodicity of potential is lost, SSB for large enough c, α_{min} varies continuously
◮ No SSB induced by boundary term alone
Comparison to lattice results

gauge boson masses

1. We compute m_Z, m_Z^* and $\langle \text{tr} \{\phi \phi^\dagger\} \rangle$ from $L/a = 12$, $T/a = 96$, $N_5 = 6$ lattice.

2. determine $\alpha_{\text{lat}}(\beta)$ by

$$\alpha_{\text{lat}}(\beta) = \sqrt{\frac{\langle \text{tr} \{\phi \phi^\dagger\} \rangle N_5^2}{2\pi}}$$

- compare to corrected KK masses at $c = 13.0$, $c_0 = 0.0121$, (ground state, 1st excited state)
- minimum of CW potential for these coefficients $\alpha_{\text{min}} = 0.225$
Comparison to lattice results

ratio of Higgs to Z mass

\[
\rho_{HZ^0} = \frac{m_H}{M_Z}
\]

1. determine \(\alpha_{\text{lat}}(\beta) \) from simulation
2. tune \(c, c_0 \) such that CW potential such that
 \(\alpha_{\text{min}} = \alpha_{\text{lat}}(\beta) \)
3. compute the Higgs mass from the potential

\[
(m_H R)^2 = \frac{N}{N_5 \beta} R^4 \frac{d^2 V}{d\alpha^2} \bigg|_{\alpha_{\text{min}}}
\]

\(\rho_{HZ^0} > 1 \) can be reached on the lattice.
Conclusions

- Lattice simulations of $SU(2)$ on the orbifold. $SU(2) \xrightarrow{Z_2} U(1)$ with a massive gauge particle.
- Contradiction to 1-loop perturbative result can be resolved by taking into account an explicit cutoff in perturbation theory.
- We get good qualitative agreement between the new CW result and the simulation data.
Outlook

- SU(3): CW calculation at finite cutoff shows that experimental value of the Weinberg angle \(\cos \theta_W \approx 0.877\) can be reached.
- SU(3): \(\rho_{HZ^0} > 1.25\) is possible for small \(N_5\) ⇒ anisotropic lattices
- localization \([\text{Dvali, Shifman}]\) for large \(N_5\) close to phase transition.