On Majorana fermions on the lattice

Yuji Igarashi and Jan Martin Pawlowski

Faculty of Education
Niigata University

Institute for Theoretical Physics
Heidelberg University

Regensburg, July 30th, 2007
1. Chiral fermions on the lattice
 - Nielsen-Ninomiya no–go theorem

2. Majorana fermions on the lattice
 - Majorana no-go
 - Majorana lattice fermions

3. summary
1. Chiral fermions on the lattice
 - Nielsen-Ninomiya no-go theorem

2. Majorana fermions on the lattice
 - Majorana no-go
 - Majorana lattice fermions

3. Summary
Nielsen-Ninomiya no–go theorem

Dirac action

\[S = \sum_{x,y \in \Lambda} \bar{\psi}(x) D(x - y) \psi(y) \]

- compatibility of chiral projections, \(P_{\psi,\bar{\psi}}^2 = P_{\psi,\bar{\psi}} \),

\[D P_{\psi} = P_{\bar{\psi}} D \]
Dirac action

\[S = \sum_{x,y \in \Lambda} \bar{\psi}(x) D(x - y) \psi(y) \]

- compatibility of chiral projections, \(P_{\psi,\bar{\psi}}^2 = P_{\psi,\bar{\psi}} \)

\[D P_{\psi} = P_{\bar{\psi}} D \]

- example: Ginsparg-Wilson fermions in 4d
 - GW-relation: \(\gamma_5 D - D \gamma_5 = aD \gamma_5 D \)
 - projection operators

\[P_{\psi} = \frac{1}{2} (1 - \gamma_5), \quad P_{\bar{\psi}} = \frac{1}{2} (1 + \gamma_5) \]

with \(\gamma_5^2 = 1 \) and \(\gamma_{\psi} = \gamma_5(1 - aD), \quad \gamma_{\bar{\psi}} = \gamma_5. \)
Nielsen-Ninomiya no–go theorem

Dirac action

\[S = \sum_{x, y \in \Lambda} \bar{\psi}(x) D(x - y) \psi(y) \]

- compatibility of chiral projections: \(D P_\psi = P_{\bar{\psi}} D \)
- locality

\[|D_{ij}(x)|, |P_{\bar{\psi}}_{ij}(x)|, |P_{\psi}_{ij}(x)| < c e^{-|x|/\lambda} \]
Nielsen-Ninomiya no–go theorem

Dirac action

$$S = \sum_{x,y \in \Lambda} \bar{\psi}(x) D(x - y) \psi(y)$$

- compatibility of chiral projections: $$D P_\psi = P_{\bar{\psi}} D$$
- locality
- spin-$\frac{1}{2}$ zeros

$$D(k)^{-1} = \frac{(k_\mu - k_\mu^{(i)})}{|k - k^{(i)}|^2} \sum_{\mu} (i)^\dagger + \text{finite}$$
Nielsen-Ninomiya no–go theorem

Dirac action

\[S = \sum_{x,y \in \Lambda} \bar{\psi}(x)D(x-y)\psi(y) \]

- compatibility of chiral projections: \(DP_{\psi} = P_{\bar{\psi}}D \)
- locality
- spin-\(\frac{1}{2} \) zeros

Then the total chirality \(\chi \) is given by

\[\chi = n[P_{\psi}] - n[P_{\bar{\psi}}] \]

with

\[n[P] \equiv \frac{1}{l!} \left(\frac{i}{2\pi} \right)^l \int_{T^{2l}} \text{tr} \ P(dP)^{2l} \in \mathbb{Z} \]
Nielsen-Ninomiya no–go theorem

Dirac action

\[S = \sum_{x,y \in \Lambda} \bar{\psi}(x)D(x - y)\psi(y) \]

Then the total chirality \(\chi \) is given by

\[\chi = n[P_{\psi}] - n[P_{\bar{\psi}}] \]

\(\psi \) and \(\bar{\psi} \) live in topologically different spaces!

'go-go theorem'
Nielsen-Ninomiya no–go theorem

Dirac action

\[S = \sum_{x,y \in \Lambda} \bar{\psi}(x) D(x - y) \psi(y) \]

Then the total chirality \(\chi \) is given by

\[\chi = n[P_\psi] - n[P_{\bar{\psi}}] \]

\(\psi \) and \(\bar{\psi} \) live in topologically different spaces!

1. Chiral fermions on the lattice
 - Nielsen-Ninomiya no–go theorem

2. Majorana fermions on the lattice
 - Majorana no-go
 - Majorana lattice fermions

3. summary

Yuji Igarashi and Jan Martin Pawlowski
On Majorana fermions on the lattice
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

Majorana reduction

\[\psi = \chi + i \eta, \quad \bar{\psi} = \chi^T C + i \eta^T C \]

with charge conjugation \(C \).
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{\mathbf{x},\mathbf{y} \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \(\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T C + i\eta^T C \)

- Properties of \(C \), continuum

\[
\begin{align*}
C \gamma_\mu C^{-1} & = -\gamma^T_\mu \\
C \gamma_5 C^{-1} & = \gamma^T_5 \\
C^\dagger C & = 1 \\
C^T & = -C.
\end{align*}
\]
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \[\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T C + i\eta^T C \]
- Properties of \(C \)
- Skew symmetry of \(D \)

\[(C D)^T = -C D \]
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \(\psi = \chi + i\eta \), \(\bar{\psi} = \chi^T C + i\eta^T C \)
- \(C\gamma_5 C^{-1} = \gamma_5^T \) and skew symmetry: \((C D)^T = -C D \)
- Chiral invariance \(\psi \rightarrow \gamma \psi \), \(\bar{\psi} \rightarrow \bar{\psi} \gamma \bar{\psi} \)
Majorana no-go

Majorana action

\[
S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi
\]

- Majorana reduction: \(\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T C + i\eta^T C \)
- \(C\gamma_5 C^{-1} = \gamma_5^T \) and skew symmetry: \((C D)^T = -C D \)
- Chiral invariance \(\psi \rightarrow \gamma \psi \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \gamma \bar{\psi} \)
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \(\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T C + i\eta^T C \)
- \(C \gamma_\bar{\psi} C^{-1} = \gamma_\psi^T \) and skew symmetry: \((C \, D)^T = -C \, D \)
- Chiral invariance \(\psi \rightarrow \gamma_\psi \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \gamma_\bar{\psi} \).
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \(\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T C + i\eta^T C \)
- \(C\gamma_{\bar{\psi}}C^{-1} = \gamma^T_{\psi} \) and skew symmetry: \((C D)^T = -C D \)
- Chiral invariance: \(\psi \rightarrow \gamma_{\psi} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \gamma_{\bar{\psi}} \)

\(\psi \) and \(\bar{\psi} \) live in topologically different spaces!

\[C\gamma_{\bar{\psi}}C^{-1} \neq \gamma^T_{\psi} \]

for smooth invertible \(C \)'s! possible solution \(C = C_{\text{cont}}(1 - \frac{1}{2} aD) \) vanishes at doublers
Majorana no-go

Majorana action

\[S = \frac{1}{2} \sum_{x,y \in \Lambda} \bar{\psi} D \psi \]

- Majorana reduction: \(\psi = \chi + i\eta, \quad \bar{\psi} = \chi^T \gamma \bar{\psi} + i\eta^T \gamma \bar{\psi} \)
- \(C \gamma \bar{\psi} C^{-1} = \gamma^T \psi \) and skew symmetry: \((C D)^T = -C D \)
- Chiral invariance \(\psi \rightarrow \gamma \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \gamma \)

\(\psi \) and \(\bar{\psi} \) live in topologically different spaces!

Majorana action

\[S = \sum_{x,y \in \Lambda} \eta_{\bar{\psi}}^T C D \chi_{\psi} \]

• Majorana reduction

\[\chi_{\psi} = P_{\psi} \chi, \quad \eta_{\bar{\psi}}^T C = \eta_{\bar{\psi}}^T C \bar{P}_{\bar{\psi}} \]
Majorana lattice fermions

Majorana action

\[S = \sum_{x,y \in \Lambda} \eta_{\bar{\psi}}^T C D \chi_{\psi} \]

- Majorana reduction

\[\chi_{\psi} = P_{\psi} \chi, \quad \eta_{\bar{\psi}}^T = \eta_{\bar{\psi}}^T \hat{P}_{\bar{\psi}} \]

with \(\hat{P}_{\bar{\psi}} = C P_{\bar{\psi}} C^{-1} \), \(\hat{\gamma}_{\bar{\psi}} = C \gamma_{\bar{\psi}} C^{-1} \).
Majorana lattice fermions

Majorana action

$$ S = \sum_{x,y \in \Lambda} \eta_{\psi}^T C D \chi_{\psi} $$

- Majorana reduction $\chi_{\psi} = P_{\psi} \chi$, $\eta_{\psi}^T = \eta_{\psi}^T \hat{P}_{\psi}$ with $\hat{P}_{\psi} = C P_{\bar{\psi}} C^{-1}$.

- example: Ginsparg-Wilson fermions in 4d

 - projection operators

 $$ P_{\psi} = \frac{1}{2} (1 - \gamma_{\psi}) , \quad P_{\bar{\psi}} = \frac{1}{2} (1 + \gamma_{\bar{\psi}}) , $$

 with $\gamma_{\psi, \bar{\psi}} = 1$ and $\gamma_{\psi} = \gamma_5 (1 - aD)$, $\gamma_{\bar{\psi}} = \gamma_5$.

 - $\hat{\gamma}_{\psi} = (1 - aD) \gamma_5$, $\hat{\gamma}_{\bar{\psi}} = \gamma_5$
Majorana lattice fermions

Majorana action

\[S = \sum_{x,y \in \Lambda} \eta_{\psi}^T C D \chi_{\psi} \]

- Majorana reduction \(\chi_{\psi} = P_{\psi} \chi \), \(\eta_{\psi}^T = \eta_{\psi}^T \hat{P}_{\psi} \) with \(\hat{P}_{\psi} = C P_{\bar{\psi}} C^{-1} \).

- skew symmetry : \((C D)^T = -C D \)
Majorana lattice fermions

Majorana action

\[S = \sum_{x,y \in \Lambda} \eta^T_{\bar{\psi}} C D \chi_\psi \]

- Majorana reduction \(\chi_\psi = P_\psi \chi \), \(\eta^T_{\bar{\psi}} = \eta^T_{\bar{\psi}} \hat{P}_\psi \) with \(\hat{P}_\psi = C P_{\bar{\psi}} C^{-1} \).
- Skew symmetry: \((C D)^T = -C D \)
- Chiral invariance trivial

\[\chi_\psi \to \gamma_\psi \chi_R, \quad \eta^T_{\bar{\psi}} \to \eta^T_{\bar{\psi}} \gamma_{\bar{\psi}} \]
Majorana lattice fermions

Majorana action

$$S = \sum_{x,y \in \Lambda} \eta^T_{\psi} C D \chi_{\psi}$$

- Majorana reduction \(\chi_{\psi} = P_{\psi} \chi \), \(\eta^T_{\psi} = \eta^T_{\psi} \hat{P}_{\psi} \) with \(\hat{P}_{\psi} = C P_{\psi} C^{-1} \).
- Skew symmetry : \((C D)^T = -C D \)
- Chiral invariance trivial \(\chi_{\psi} \rightarrow \gamma_{\psi} \chi_R \), \(\eta^T_{\psi} \rightarrow \eta^T_{\psi} \gamma_{\psi} \)

It follows that

$$S = \sum_{x,y \in \Lambda} \eta^T_{\psi} C D \chi_{\psi} = \sum_{x,y \in \Lambda} \chi^T_{\psi} C D \eta_{\psi}$$
Majorana lattice fermions

Majorana action

\[S = \sum_{x,y \in \Lambda} \eta_{\bar{\psi}}^T C D \chi_{\psi} \]

- Majorana reduction \(\chi_{\psi} = P_{\psi} \chi \), \(\eta_{\bar{\psi}}^T = \eta_{\bar{\psi}}^T \hat{P}_{\bar{\psi}} \) with \(\hat{P}_{\bar{\psi}} = C P_{\bar{\psi}} C^{-1} \).

- Skew symmetry: \((C D)^T = -C D \)

- Chiral invariance trivial \(\chi_{\psi} \rightarrow \gamma_{\psi} \chi_R \), \(\eta_{\bar{\psi}}^T \rightarrow \eta_{\bar{\psi}}^T \gamma_{\bar{\psi}} \)

- Yukawa action chirally invariant with: \(\varphi \rightarrow 2 \varphi \)

\[S_Y = g \sum_{x,y \in \Lambda} \left(\chi_{\bar{\psi}}^T C \varphi \chi_{\bar{\psi}} + \eta_{\psi}^T C \varphi^\dagger \eta_{\psi} \right) \]
1. Chiral fermions on the lattice
 - Nielsen-Ninomiya no–go theorem

2. Majorana fermions on the lattice
 - Majorana no-go
 - Majorana lattice fermions

3. summary
summary

- topological obstruction for chiral fermions on the lattice
- topological obstruction for Majorana fermions on the lattice
- construction of free lattice Majorana fermions
- Yukawa interaction