Quark mass determination from 2+1 flavor domain wall fermion simulations

Enno E. Scholz

for the RBC- and UKQCD-Collaborations

XXV. International Symposium on Lattice Field Theory

University of Regensburg

30 July – 4 August 2007
\(N_f = 2 + 1 \) Domain Wall Fermions ensembles

- \(N_f = 2 + 1 \) ensembles with Iwasaki gauge action part (publicly) available at http(s)://qcdlattices.bnl.gov generated on QCDDOC machines at Edinburgh and BNL
 * generated: \(16^3 \times 32 \times 16 \), \(24^3 \times 64 \times 16 \)
 * in production: \(32^3 \times 64 \times 16 \) talk by Chulwoo Jung

- RHMC - algorithm talk by Norman Christ

 - \(24^3 \times 64 \times 16 \) - ensemble
 * \(\beta = 2.13 \) (Iwasaki)
 * dynamical light quark mass: \(m_l \in \{0.005, 0.01, 0.02, 0.03\} \)
 * dynamical strange quark mass: \(m_s = 0.04 \)
 * lightest \(m_\pi \approx 330 \text{ MeV} \), \(m_l : m_{\text{strange}} = 1/5 \)
 * \(a^{-1} = 1.72(3) \text{ GeV} \) (from \(\Omega^- \))
 * \(a m_{\text{res}} \approx 0.0031 \): \(a m_x^{\text{phys}} = a m_x^{\text{bare}} + a m_{\text{res}} \)

- valence quark mass (partial quenching): \(m_{\text{val}} \in \{0.001, 0.005, 0.01, 0.02, 0.03, 0.04\} \)
 \[\Rightarrow \text{lightest valence quark mass: } 1/10 m_{\text{strange}} \]
• use Ω^- baryon (sss) and Kaon (made from valence quarks)
• extrapolate to chiral limit (light dynamical quark mass, light valence quark in Kaon)
• strange quark mass from ratio m_K^2 / m_{Ω}^2

$$a m_{\text{strange}}^{\text{phys}} = 0.0388(17)$$

• lattice scale from Ω^- mass at $a m_{\text{strange}}$:

$$a^{-1} = 1.722(27) \text{GeV}$$
extracting the light quark mass: Chiral Perturbation Theory

also talk by Meifeng Lin

• can we fit with χPT up to Kaon mass? Beyond??
• is LO+NLO enough?
• or do we need NNLO ??
 formulae from BijnenS et al. — add analytic terms (from symmetry considerations)

→ first we compare $SU(3) \times SU(3)$ vs. $SU(2) \times SU(2)$
 no strange quark mass in $SU(2)$:
 • unambiguous theoretical formulation — no worry about too heavy strange quark
 • extrapolation in strange quark mass, systematic error?

→ kaon mass and decay constant from

$$SU(2) \times SU(2) \text{ plus heavy strange}$$
SU(3) × SU(3)

- combined fit for
 \[af_{xy} \]
 \[\frac{(am_{xy})^2}{(am_{phys}^x + am_{phys}^y)/2} \]
 \[am_{bare}^{\text{avg}} \leq 0.015 \]

- from \(m_\pi \):
 \[(139.6 \text{ MeV}) \]
 \[am_{ud}^{\text{phys}} = 0.001403(66) \]
 \[\rightarrow m_{ud}/Z_m = 2.416(81)\text{MeV} \]
 \[\rightarrow f_\pi = 126.9(3.1)\text{MeV} \]
 \[(130.7 \text{ MeV}) \]
\[SU(2) \times SU(2) \]

- combined fit for
 \[a f_{xy} \]
 \[\frac{(am_{xy})^2}{(am_{phys}^x + am_{phys}^y)/2} \]
 \[am_{bare}^{avg} \leq 0.01 \]

- from \(m_{\pi} \):
 \((139.6 \text{ MeV}) \)
 \[am_{ud}^{phys} = 0.001403(63) \]
 \[\rightarrow m_{ud}/Z_m = 2.417(77)\text{MeV} \]
 \[\rightarrow f_{\pi} = 124.2(3.5)\text{ MeV} \]
 \((130.7 \text{ MeV}) \)
• convert B_0, f_0, LECs from SU(3)-case to SU(2)
 (1-loop matching in Gasser, Leutwyler, 1985, 2-loop: Gasser et al. 2006)

• compare SU(2)-LECs at scale $m_\pi = 139$ MeV: $\bar{l}_{3,4}$

<table>
<thead>
<tr>
<th></th>
<th>$aB_0 \cdot Z_m$</th>
<th>$a f_0$</th>
<th>\bar{l}_3</th>
<th>\bar{l}_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(2) \times SU(2)</td>
<td>2.414(61)</td>
<td>0.0665(21)</td>
<td>3.13(33)</td>
<td>4.42(14)</td>
</tr>
<tr>
<td>SU(3) \times SU(3)</td>
<td>2.453(75)</td>
<td>0.0662(17)</td>
<td>2.87(28)</td>
<td>4.09(05)</td>
</tr>
<tr>
<td>MILC ($N_f = 2 + 1$)</td>
<td></td>
<td>0.6(1.2)</td>
<td>3.8(5)</td>
<td></td>
</tr>
<tr>
<td>ETMC ($N_f = 2$)</td>
<td></td>
<td>3.62(12)</td>
<td>4.52(6)</td>
<td></td>
</tr>
<tr>
<td>CERN ($N_f = 2$)</td>
<td></td>
<td>3.0(5)</td>
<td>4.4(2)</td>
<td></td>
</tr>
</tbody>
</table>

• good agreement between SU(2) and SU(3)

• systematic error from fixed strange quark mass?
SU(2) × SU(2) plus heavy strange

• only use chiral symmetry properties of the up- and down-quarks (SU(2) × SU(2))

• treat strange quark as heavy: ideally \(m_{\text{strange}} \gg m_{\text{up,down}} \)

 * PDG: 95 ± 25 MeV \(\gg 2.5 \sim 5.5, \) MeV ?
 * our simulation, dynamical: \(0.04 + a m_{\text{res}} \gg \{0.005, 0.01\} + a m_{\text{res}} \) ??

• we only have one dynamical strange quark mass (at the moment)
 using partially quenched as well for the moment

 future simulations optimally should include a 2nd set of ensembles
 using a different dynamical strange quark

• Sharpe, Zhang (1996), Booth (1995)
SU(2) × SU(2) plus heavy strange I: \(m_K^2 \)

- only use SU(2) × SU(2) for light (dynamical, valence) quarks
- treat \(a m_s \) as heavy

\[
m_K^2 = B_{0k}^{m_s} \left\{ 1 + \frac{d_1^{m_s}}{f_0^2} \chi_l + \frac{d_2^{m_s}}{f_0^2} \chi_x \right\}
\]

- \(f_0, B_0 \) from SU(2) × SU(2) fit, fixed, \(a m_l \leq 0.01 \)
- extrapolate to \(a m_{\text{phys}} \)
- use \(a m_s = (0.02), 0.03, 0.04 \)
• interpolate to am_{strange}

 $m_K = 512.1(1.3)\text{ MeV}$

 (493.7 MeV)

• or (again) extract am_s from physical m_K:

 * $am_{\text{phys}}^{\text{strange}} = 0.0359(16)$

 compare with 0.0388(17) from Ω^-

 \Rightarrow systematic error

 (but no recalculation of a^{-1} done)
SU(2) × SU(2) plus heavy strange II: \(f_K \)

- only use SU(2) × SU(2) for light (dynamical, valence) quarks
- treat \(a m_s \) as heavy

\[
f_K = f_0^{m_s} \left\{ 1 + \frac{c_1^{m_s}}{f_0^2} \chi_{ud} + \frac{c_2^{m_s}}{f_0^2} \chi_{x} - \frac{1}{(4\pi f_0)^2} \left[\frac{\chi_x + \chi_{ud}}{2} \log \frac{\chi_x + \chi_{ud}}{2(a\Lambda)^2} + \frac{\chi_{ud} - 2\chi_x}{4} \log \frac{\chi_x}{(a\Lambda)^2} \right] \right\}
\]

- \(f_0, B_0 \) from SU(2) × SU(2) fit, fixed, \(a m_l \leq 0.01 \)
- extrapolate to \(a m_{ud}^{\text{phys}} \)
- use \(a m_s = (0.02), 0.03, 0.04 \)
• interpolate to $a m_{\text{strange}}$
 • $f_K = 150.0(3.6)$
 (159.8 MeV)
 • $f_K/f_\pi = 1.208(14)$
 (1.223)

• or (again) extract $a m_{\text{strange}}$ from physical f_K:
 * $a m_{\text{strange}}^{\text{phys}} = 0.060(10)$
 compare with 0.0388(17) from Ω^-
 * systematic error
 (but no recalculation of a^{-1} done)
• small slope in interpolation, not a good way
 to determine $a m_{\text{strange}}$
non-perturbative renormalization (Rome-Southampton)

- renormalization done at $16^3 \times 32 \times 16$ lattices (same gauge action, lattice spacing)
- match bare lattice operators to RI/MOM non-perturbatively
- perturbative matching to $\overline{\text{MS}}$ at 2 GeV
- **Domain Wall Fermions:**
 * control of chiral symmetry breaking
 * $O(a)$-improved
 \rightarrow operator mixing reduced
 \rightarrow (partially) conserved axial and vector currents
- publication in preparation by RBC- and UKQCD-Collaborations
- here we are interested in $Z_m = 1/Z_S$
• renormalized amp. vertex functions $\Lambda_i^{\text{ren}} = Z_i/Z_q \Lambda_i = 1, \ i \in \{S, P, V, A, T\}$

$$Z_{m}^{\text{RI}} = \frac{Z_q(p)}{Z_S(\Lambda_S)} \frac{Z_A(p)}{Z_q(\Lambda_A)} \frac{1}{Z_A} \text{ hadronic ME}$$

• four loop RG-running $Z_{m}^{\text{RGI}} = \frac{c(\alpha_s(\mu_0)/\pi)}{c(\alpha_s(\mu)/\pi)} Z_{m}(\mu)$

[Chetyrkin et al., 2000]

• three loop matching RI/MOM to $\overline{\text{MS}}$

$$Z_{m}^{\overline{\text{MS}}}(2 \text{ GeV}) = 1.575(28)(15)(83)$$

(error: statistical, $\Lambda_A \leftrightarrow \frac{1}{2}(\Lambda_A + \Lambda_V)$, linear vs. quadratic chiral extrap.)

E. E. Scholz (RBC/UKQCD) — Quark mass determination from 2+1 DWF
before I summarize: Disclaimer

- finite size effects
- continuum extrapolation
- interpolation in strange quark mass
- isospin-breaking, EM-splitting

need further investigation!
Finale: the quark masses

using the non-perturbative renormalization factor $Z_{m}^{\overline{MS}}(2 \text{ GeV}) = 1.58(09)$ (combined error):

- average light quark mass from pion mass in SU(2) × SU(2) χPT:

 $$m_{ud} = 3.82(25) \text{ MeV}$$

 systematic error estimate ??

- strange quark mass from Ω^{-} and Kaon mass:

 $$m_{\text{strange}} = 105.7(6.8) \text{ MeV} \quad m_{ud} : m_{\text{strange}} = 1 : 27.7(4)$$

 * obtained in SU(2) × SU(2) plus heavy strange

 $$m_{\text{strange}} = 97.6(6.2) \text{ MeV} \quad m_{ud} : m_{\text{strange}} = 1 : 25.6(3)$$

 (caveat: a^{-1} not adjusted)

 * (rough) estimate for systematic error: 10%