The distributions of individual Dirac eigenvalues for QCD at non-zero chemical potential: RMT predictions and Lattice results

Leonid Shifrin
Brunel University, West London
leonid.shifrin@brunel.ac.uk

In collaboration with:

Gernot Akemann
Brunel University

Jacques Bloch
University of Regensburg

Tilo Wettig
University of Regensburg

The XXV International Symposium on Lattice Field Theory
University of Regensburg, August 3, 2007
Plan of the talk

- Motivation and open questions
- Gap probabilities and individual eigenvalue distributions for complex eigenvalues
- Results from Chiral Random Matrix Theory (chRMT)
- Lattice simulations
- The comparison
- Conclusions
Motivation and open questions

General

• Studies of the low-energy Dirac spectrum provide important information on the chiral structure of QCD

• In the ergodic regime of QCD, Lattice results can be compared to analytical predictions of the chiral Random Matrix Theory (chRMT)

• At zero quark (barion) density ($\mu = 0$) lattice results agree very well with chRMT (Edwards, Heller, Kisikis & Narayanan’99)

• $\mu \neq 0$: problems and recent developments

 – Sign problem in unquenched Lattice simulations

 – Dirac operator non-hermitian, and eigenvalues complex in general

 – Recent developments in non-hermitian chRMT (Akemann’02, Splittorff & Verbaarschot’03, Osborn’03), all spectral correlations are known explicitly.

 – Generalization of the overlap formalism to $\mu \neq 0$ (Bloch & Wettig’06)

 – First comparison of Lattice results and chRMT for both trivial and non-trivial topology (essentially, on the level of spectral density) - good agreement (Bloch & Wettig’06)
Individual eigenvalue distributions

• Possible probes
 – Smallest eigenvalue(s)
 – Microscopic spectral density
 – Number variance

• Individual eigenvalue distributions $p_k(\lambda)$ are a better probe than the microscopic spectral density:
 – Localized distributions, more sensitive
 – Natural object to compute from the Lattice data
 – Potentially can provide more information

• For $\mu = 0$, all $p_k(\lambda)$ are known analytically in chRMT (Damgaard, Nishigaki & Wettig’98, Damgaard & Nishigaki’01), in excellent agreement with the Lattice results (Edwards et al, ’99)

• Questions to answer for $\mu \neq 0$:
 – How to order complex eigenvalues (i.e., what means "first", "second", etc)?
 – Analytical predictions from chRMT?

• The only known RMT result of this kind is for Ginibre ensemble (Grobe, Haake & Sommers’88) - different symmetry class than chRMT
Gap probabilities and eigenvalue distributions for complex eigenvalues

1. Gap probabilities: direct generalization from 1D

- k - point correlation functions for N complex eigenvalues:
 \[
 \rho_k(\lambda_1, \ldots, \lambda_k) = \frac{N!}{(N-k)!} \int_{C^{N-k}} d^2 \lambda_{k+1} \ldots d^2 \lambda_N \mathcal{P}_N(\lambda_1, \ldots, \lambda_N).
 \]

- Ordering problem: how to order complex eigenvalues?

- The gap probability $E_k[J]$ for a closed region J:
 \[
 E_k[J] = \frac{N!}{(N-k)!} \int_{J^k} d^2 \lambda_1 \ldots d^2 \lambda_k \times \\
 \times \int_{(C/J)^{N-k}} d^2 \lambda_{k+1} \ldots d^2 \lambda_N \mathcal{P}_N(\lambda_1, \ldots, \lambda_N).
 \]

- In the complex case $E_k[J]$ are functionals of the 2D domain J.

- Still, $E_k[J]$ and $\rho_l(\lambda_1, \ldots, \lambda_l)$ relate similarly to in the real case
 \[
 E_k[J] = \sum_{l=0}^{N-k} (-1)^l \frac{1}{l!} \int_{J^{k+l}} d^2 \lambda_1 \ldots d^2 \lambda_{k+l} \rho_{k+l}(\lambda_1, \ldots, \lambda_{k+l}).
 \]
2. Eigenvalue distributions and gap probabilities

- We define k-th eigenvalue distribution with respect to the domain J:

$$ p_k^J(\tau) = k \binom{N}{k} \int_{J^{(k-1)}} d^2 \lambda_1 ... d^2 \lambda_{k-1} \int_{(C/J)^{N-k}} d^2 \lambda_{k+1} ... d^2 \lambda_N $$

$$ \times \mathcal{P}_N(\lambda_1, ..., \lambda_{k-1}, x(\tau) + iy(\tau), \lambda_{k+1}, ..., \lambda_N), $$

where $\{x(\tau), y(\tau)\}$ parametrize the boundary contour ∂J.

- Notice that for any functional $F^J[f]$ of the form

$$ F^J[f] = \int_J dxdy f(x, y), $$

it is true that

$$ \frac{\delta F^J}{\delta ((\partial J)(\tau))} = f(x(\tau), y(\tau)) $$

where the variation is with respect to the contour ∂J.
• Using this, we get in analogy with 1D case:

\[
\frac{\delta E_k[J]}{\delta((\partial J)(\tau))} = k! [p_k^J(\tau) - p_{k+1}^J(\tau)]
\]

• In particular, for the first eigenvalue distribution:

\[
p_1(\tau) = \rho_1(x(\tau), y(\tau)) - \int_J d^2 \lambda \rho_2(\lambda, x(\tau) + iy(\tau)) + \\
+ \frac{1}{2} \int_{J \times J} d^2 \lambda_1 d^2 \lambda_2 \rho_3(\lambda_1, \lambda_2, x(\tau) + iy(\tau)) - \ldots
\]

• Ordering defined only with respect to a given contour \(J\). So, \(J\) becomes a part of the definition of \(p_k\).

• We want to compare \(p_k\)-s defined on different contours. This can be done for any family of mutually non-intersecting contours which span some domain in \(C\).

• For a general family of contours, \(p_k\)-s have to be slightly redefined to be properly normalized.

• Certain 1-parametric families of contours such as circles and ellipses are simpler than others.

• A practical programme for computations.
Results from chiral RMT

1. Non-Hermitian Chiral 2-matrix model

- The specific matrix model we use is the 2-matrix model for QCD with a barion chemical potential μ, defined in Osborn’04:

$$Z_{\nu} = \mathcal{N} \int dA dB w_G(A)w_G(B) \prod_{i=1}^{N_f} \det(D + m_i),$$

$$D = \begin{pmatrix} 0 & iA + \mu B \\ iA^\dagger + \mu B^\dagger & 0 \end{pmatrix}, \quad w_G(A) = \exp\{-N Tr[A^2]\}$$

where ν is the (integer) topological charge, D is the Dirac operator, and A and B are complex $(N + \nu) \times N$ matrices.

- The resulting Dirac eigenvalue representation has a non-gaussian weight:

$$Z_{\nu} = \mathcal{N}' \prod_{j=1}^{N_f} m_j^\nu \int \prod_{k=1}^{N} \left[w(z_k) \prod_{j=1}^{N_f} (z_k^2 + m_j^2) dz_k \right] |\Delta(z^2)|^2,$$

$$w(z) = |z|^{2\nu+2} \exp\left\{ \frac{N(1 - \mu^2)}{4\mu^2} (z^2 + \bar{z}^2) \right\} K_{\nu}\left(\frac{N(1 + \mu^2)}{2\mu^2}|z|^2 \right)$$

- The polynomials orthogonal on \mathcal{C} with this weight are Laguerres:

$$P_k(z) = \left(\frac{\mu^2 - 1}{N} \right)^k k! L_k^\nu\left(\frac{Nz^2}{1 - \mu^2} \right)$$
• The exact spectral microscopic kernel of the model reads for $N_f = 0$ (Splittorff & Verbaarschot’03, Osborn’04)

$$K_s(x, y) = \frac{|xy|^{\nu+1}}{2\pi \alpha^2 (xy^*)^\nu} \sqrt{K_\nu\left(\frac{|x|^2}{2\alpha^2}\right)K_\nu\left(\frac{|y|^2}{2\alpha^2}\right)} \times$$

$$\times e^{\frac{Re(x^2+y^2)}{4\alpha^2}} \int_0^1 e^{-\alpha^2 t} J_\nu(x\sqrt{t})J_\nu(y^*\sqrt{t}).$$

• The microscopic limit is taken as:

$$\rho_S(\xi_1, \ldots, \xi_n) = \lim_{N \to \infty} \frac{1}{N^{2n}} \rho_N\left(\frac{\xi_1}{N}, \ldots, \frac{\xi_n}{N}\right)$$

• The regime of weak non-Hermiticity (Fyodorov, Khoruzhenko, Sommers’97):

$$\alpha^2 = 2N \mu^2 - \text{fixed, } N \to \infty$$

• The k-point functions can be expressed as determinants of the kernel (Akemann’02, Osborn’04).

• In the limit $\alpha \to 0$ we have

$$\rho_\nu(z) = \delta(Im(z)) \rho^{ch\text{GUE}}_\nu(Re(z))$$

• In the limit: $\mu = 1, N \to \infty (\alpha \to \infty)$ (strong non-Hermiticity) - rotational invariance:

$$\rho_\nu(z) = \frac{1}{\pi} |z|^2 K_\nu(|z|^2) I_\nu(|z|^2)$$
2. Exact results at strong non-Hermiticity

• For \(N_f = 0 \) the probability that the domain \(J \) is free from the eigenvalues (modulo exact zero modes) is given by

\[
E_0[J] = \frac{1}{Z} \int_{C/J} dz_1 \ldots dz_N \prod_{k=1}^{N} w(z_k) |\Delta(z^2)|^2
\]

• For \(\mu = 1 \), the measure is rotationally invariant:

\[
w(z) \equiv w(|z|) = |z|^{2\nu+2} K_{\nu}(N|z|^2)
\]

• This symmetry allows us to obtain an exact expression:

\[
E_0(R) = \prod_{k=0}^{N} \left\{ \left(R^2 \right)^{2k+\nu+1} K_{\nu+1}(R^2) \over 2^{(2k+\nu)} k!(k+\nu)! \right\} + \right.
\]

\[
+ R^2 \left(K_{\nu+1}(R^2) I_{\nu+2}^{[k-2]}(R^2) + K_{\nu+2}(R^2) I_{\nu+1}^{[k-1]}(R^2) \right)
\]

where we introduced an incomplete Bessel function:

\[
I_{\nu}^{[k]}(x) = \sum_{n=0}^{k} \frac{(x/2)^{2n+\nu}}{n!(n+\nu)!}
\]

• Similar expressions for all \(E_k \)'s can be written. The eigenvalue distributions are then computed with

\[
p_k(R) = - \frac{\partial}{\partial R^2} \sum_{n=0}^{k-1} \frac{E_n(R)}{n!}
\]

• Note that this case corresponds to circular contours \(J \) and we have a well-defined radial ordering.
• First few eigenvalue distributions
3. Fredholm determinant expansion at weak non-Hermiticity

- Weak non-Hermiticity corresponds to finite $\alpha = \mu \sqrt{2N}$.
 For finite volume (N in RMT), μ is also finite. This is the case on the Lattice.

- Our approach in this case is based on the formula
 \[
 p_1(\tau) = \rho_1(x(\tau), y(\tau)) - \int_J d^2 \lambda \rho_2(\lambda, x(\tau) + iy(\tau)) + \\
 + \frac{1}{2} \int_{J \times J} d^2 \lambda_1 d^2 \lambda_2 \rho_3(\lambda_1, \lambda_2, x(\tau) + iy(\tau)) - ...
 \]

- In practice we compute it up to the ρ_3 term. The convergence is very fast.

- Motivation: this procedure was carried out before for $\mu = 0$ case (Akemann & Damgaard’03), where exact results are known (Damgaard & Nishigaki’01) and the fast convergence was observed.

- For the $\mu \neq 0$ case (2-dimensional), we have to specify the family of contours. We considered ellipses:
 \[
 \text{Re}(z) = \eta \cos \phi , \quad \text{Im}(z) = \frac{a}{b} \eta \sin \phi ,
 \]
 where a and b are fixed for a given contour family, while a given contour is characterized by the "radius" η, $0 \leq \eta \leq b$.
• The 1D result:

The distribution of the first eigenvalue \(\rho_1(\lambda) \) for \(\nu = 0 \).

• The 2D result:

One-point density \(\rho_1(\lambda) \) for \(\nu = 0 \) and \(\mu = 0.1 \) (\(\sigma = 0.591 \)).

Computations were performed with Mathematica and DCUHRE routine (Alan Genz et al.) for multidimensional adaptive integration.
Results for $\nu = 0$ and increasing $\mu(\alpha)$

- Weakest non-Hermiticity (corresponds to $\mu = 0.1$ on the Lattice)

One-point density $\rho_1(\lambda)$, for $\nu = 0$ and $\mu = 0.1$ ($\alpha = 0.591$)

The distribution of the first eigenvalue $p_1(\lambda)$ for $\nu = 0$ and $\mu = 0.1$ ($\alpha = 0.591$)
• Weak non-Hermiticity ($\mu = 0.2$)

One-point density $\rho_1(\lambda)$, for $\nu = 0$ and $\mu = 0.2$ ($\alpha = 1.109$)

The distribution of the first eigenvalue $p_1(\lambda)$ for $\nu = 0$ and $\mu = 0.2$ ($\alpha = 1.109$)
• **Stronger non-Hermiticity** ($\mu = 0.3$)

One-point density $\rho_1(\lambda)$, for $\nu = 0$ and $\mu = 0.3$ ($\alpha = 1.683$)

The distribution of the first eigenvalue $p_1(\lambda)$ for $\nu = 0$ and $\mu = 0.3$ ($\alpha = 1.683$)
Results for $\nu = 1$ and increasing $\mu(\alpha)$

- Weakest non-Hermiticity (corresponds to $\mu = 0.1$ on the Lattice)

One-point density $\rho_1(\lambda)$, for $\nu = 1$ and $\mu = 0.1$ ($\alpha = 0.591$)

The distribution of the first eigenvalue $p_1(\lambda)$ for $\nu = 1$ and $\mu = 0.1$ ($\alpha = 0.591$)
• **Weak non-Hermiticity (\(\mu = 0.2 \))**

One-point density \(\rho_1(\lambda) \), for \(\nu = 1 \) and \(\mu = 0.2 \) (\(\alpha = 1.109 \))

The distribution of the first eigenvalue \(p_1(\lambda) \) for \(\nu = 1 \) and \(\mu = 0.2 \) (\(\alpha = 1.109 \))
- Stronger non-Hermiticity ($\mu = 0.3$)

One-point density $\rho_1(\lambda)$, for $\nu = 1$ and $\mu = 0.3$ ($\alpha = 1.683$)

The distribution of the first eigenvalue $p_1(\lambda)$ for $\nu = 1$ and $\mu = 0.3$ ($\alpha = 1.683$)
Lattice simulations

- Wilson Dirac operator at $\mu \neq 0$

$$D_W(\mu) = 1 - k \sum_{i=1}^{3} (T_i^+ + T_i^-) - k(e^{\mu T_4^+} + e^{-\mu T_4^-}),$$

$$(T_{\nu}^\pm) = (1 \pm \gamma_\nu)U_{\pm \nu}(x)\delta_{y,x,\pm \nu}, \quad k = \frac{1}{2m_W + 8}$$

- At $\mu \neq 0$ the overlap operator is defined (Bloch, Wettig’06) as

$$D_{OV}(\mu) = 1 + \gamma_5 \epsilon(\gamma_5 D_W(\mu))$$

- Main properties of D_{OV}
 - $\gamma_5 D_{OV}(\mu) \gamma_5 = D_{OV}^\dagger (-\mu)$ - no longer γ_5-Hermitian
 - $D_{OV}(\mu)$ satisfies the Ginsparg - Wilson relation
 - Still have exact lattice chiral symmetry and exact zero modes
 - For an eigenfunction ψ_{λ}, $\lambda \neq 0, 2$, $\psi_{\lambda'} = \gamma_5 \psi_{\lambda}$ is also an eigenfunction with $\lambda' = \lambda/(\lambda - 1)$
 - For $\lambda = 0, 2$ ψ_{λ} have definite chirality

- Simulation details
 - Simulation performed for $\mu = 0.1, 0.2, 0.3, 1.0$
 - For each μ, 7000 - 9000 configurations
 - The parameters were: $\beta = 5.1$, $V = 4^4$, $m_W = -2$
Lattice vs. chRMT - a comparison

• To have a good statistics, we compare the first eigenvalue distribution integrated over the polar angle ϕ

$$P_1(\eta) = \int_{-\pi}^{\pi} d\phi \ p_1(\eta, \phi)$$

• For lattice data, binning in η is performed, according to the definition of ellipses (or other contours we choose)

• To compare to RMT, the Σ and f_π were determined from a 2-parametric fit to the RMT microscopic spectral density

• Eigenvalues have to be rescaled as $z = \lambda V \Sigma$

• RMT description is valid when $m_\pi, \mu << \frac{1}{L} << \Lambda_{QCD}$, or $|z| << f^2_\pi \sqrt{V}$.
Weakest non-Hermiticity ($\mu = 0.1$)

- The density (previous work - Bloch & Wettig’06)

\[
\rho(0,y)
\]

- The first eigenvalue
Weak non-Hermiticity ($\mu = 0.2$)

- The density (previous work)

 \[\rho(0,y) \]

- The first eigenvalue
Stronger non-Hermiticity ($\mu = 0.3$)

- The density (previous work)

- The first eigenvalue
Even stronger non-Hermiticity ($\mu = 1.0$)

- The density (previous work)

- The first eigenvalue
Conclusions

• Ordering of complex eigenvalues is possible with respect to a given family of mutually non-intersecting contours in the complex plane

• Known relations between spectral correlation functions and individual eigenvalue distributions can be generalised to complex eigenvalues

• In the case of strong non-Hermiticity, we obtained exact analytical predictions in chRMT

• Fredholm determinant expansion works very well for weak non-Hermiticity, as was expected from the $\mu = 0$ case

• The chRMT predictions are in excellent agreement with the Lattice results