The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Peter Sitch

in collaboration with:
Simon Hands and Jon-Ivar Skullerud

1 Swansea University
2 Trinity College, Dublin

Lattice 2007, 3rd August 2007
Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

Dense QCD and the Lattice

Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD
- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
- But between this and ordinary nuclear density very little is known
- Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

Dense QCD and the Lattice

Dense QCD

Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD
- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
- But between this and ordinary nuclear density very little is known
- Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD

- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
- But between this and ordinary nuclear density very little is known
- Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD

- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
 - But between this and ordinary nuclear density very little is known
 - Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD
- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
- But between this and ordinary nuclear density very little is known
 - Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
Dense QCD

Does quark matter exist in our universe?

- A hard question
- Requires quantitative knowledge of the EOS of QCD
- It is known that at asymptotic densities, QCD enters a Colour superconducting CFL phase
- But between this and ordinary nuclear density very little is known
- Non-trivial question to ask how the mass spectrum of QCD responds to $\mu \neq 0$
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

Dense QCD and the Lattice

The Phase Diagram

Figure: A cartoon of the generally proposed phase diagram for QCD
Non-Zero μ and The Sign-Problem

Unfortunately within the current framework of lattice QCD, simulations with non-zero μ are beset by the “sign problem”, which makes general simulations impossible.

- In order to extract the non-perturbative physics, one is forced to either:
- Work in the regime where μ/T is small
 - Where techniques such as: analytic continuation from imaginary μ and multi-parameter re-weighting are valid.
- Or to work with toy models, and hope to infer some general properties.
Un fortunately within the current framework of lattice QCD, simulations with non-zero μ are beset by the “sign problem”, which makes general simulations impossible.

- In order to extract the non-perturbative physics, one is forced to either:
 - Work in the regime where μ/T is small
 - Where techniques such as: analytic continuation from imaginary μ and multi-parameter re-weighting are valid.
 - Or to work with toy models, and hope to infer some general properties.
Non-Zero μ and The Sign-Problem

Unfortunately within the current framework of lattice QCD, simulations with non-zero μ are beset by the “sign problem”, which makes general simulations impossible.

- In order to extract the non-perturbative physics, one is forced to either:
- Work in the regime where μ/T is small
 - Where techniques such as: analytic continuation from imaginary μ and multi-parameter re-weighting are valid.
- Or to work with toy models, and hope to infer some general properties.
Non-Zero μ and The Sign-Problem

Unfortunately within the current framework of lattice QCD, simulations with non-zero μ are beset by the “sign problem”, which makes general simulations impossible.

- In order to extract the non-perturbative physics, one is forced to either:
- Work in the regime where μ/T is small
 - Where techniques such as: analytic continuation from imaginary μ and multi-parameter re-weighting are valid.

- Or to work with toy models, and hope to infer some general properties.
Non-Zero μ and The Sign-Problem

Unfortunately within the current framework of lattice QCD, simulations with non-zero μ are beset by the "sign problem", which makes general simulations impossible.

- In order to extract the non-perturbative physics, one is forced to either:
- Work in the regime where μ/T is small
 - Where techniques such as: analytic continuation from imaginary μ and multi-parameter re-weighting are valid.
- Or to work with toy models, and hope to infer some general properties.
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

2 Colour QCD

Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
General Properties of 2cQCD

- Is the only dense matter system with long range interactions (gluons) that can be studied within the framework of Lattice QCD
- The quarks and anti-quarks live in equivalent representations of the colour group and can be related by an anti-unitary symmetry (the Pauli–Gürsey symmetry)
 - This leads to the chiral multiplet containing both $q \bar{q}$ mesons and qq baryons
 - Also ensures that the fermion determinant is real
- Therefore with an even number of flavours it can be made to be positive definite and so have no sign problem
2 Colour QCD

General Properties of 2cQCD

- Is the only dense matter system with long range interactions (gluons) that can be studied within the framework of Lattice QCD

- The quarks and anti-quarks live in equivalent representations of the colour group and can be related by an anti-unitary symmetry (the Pauli–Gürsey symmetry)
 - This leads to the chiral multiplet containing both $q\bar{q}$ mesons and qq baryons
 - Also ensures that the fermion determinant is real
 - Therefore with an even number of flavours it can be made to be positive definite and so have no sign problem
General Properties of 2cQCD

- Is the only dense matter system with long range interactions (gluons) that can be studied within the framework of Lattice QCD

- The quarks and anti-quarks live in equivalent representations of the colour group and can be related by an anti-unitary symmetry (the Pauli–Gürsey symmetry)
 - This leads to the chiral multiplet containing both $q\bar{q}$ mesons and qq baryons
 - Also ensures that the fermion determinant is real
 - Therefore with an even number of flavours it can be made to be positive definite and so have no sign problem
2 Colour QCD

General Properties of 2cQCD

- Is the only dense matter system with long range interactions (gluons) that can be studied within the framework of Lattice QCD

- The quarks and anti-quarks live in equivalent representations of the colour group and can be related by an anti-unitary symmetry (the Pauli–Gürsey symmetry)
 - This leads to the chiral multiplet containing both $q\bar{q}$ mesons and qq baryons
 - Also ensures that the fermion determinant is real
 - Therefore with an even number of flavours it can be made to be positive definite and so have no sign problem
General Properties of 2cQCD

- Is the only dense matter system with long range interactions (gluons) that can be studied within the framework of Lattice QCD

- The quarks and anti-quarks live in equivalent representations of the colour group and can be related by an anti-unitary symmetry (the Pauli–Gürsey symmetry)
 - This leads to the chiral multiplet containing both $q\bar{q}$ mesons and qq baryons
 - Also ensures that the fermion determinant is real
 - Therefore with an even number of flavours it can be made to be positive definite and so have no sign problem
In the gluon sector, the differences between SU(2) and SU(3) are expected to be less important.

It is therefore a useful laboratory to study gluodynamics at \(\mu \neq 0 \), especially the issue of deconfinement at high density.

The phase diagram has been studied with \(\chi PT \) (valid when \(m_\pi \ll m_\rho \)). The main results being:

- For \(\mu \geq \mu_0 = m_\pi / 2 \) a baryon charge density develops along with a superfluid condensate \(\langle qq \rangle \neq 0 \).
- For \(\mu \gtrsim \mu_0 \) the system is a dilute Bose-Einstein condensate of weekly interacting scalar qq baryons.
Introduction and Motivation

2 Colour QCD

General Properties of 2cQCD (continued)

- In the gluon sector, the differences between SU(2) and SU(3) are expected to be less important
 - It is therefore a useful laboratory to study gluodynamics at \(\mu \neq 0 \), especially the issue of deconfinement at high density.

- The phase diagram has been studied with \(\chi PT \) (valid when \(m_\pi \ll m_\rho \)). The main results being:
 - For \(\mu \geq \mu_0 = m_\pi / 2 \) a baryon charge density develops along with a superfluid condensate \(\langle qq \rangle \neq 0 \).
 - For \(\mu \gtrsim \mu_0 \) the system is a dilute Bose-Einstein condensate of weekly interacting scalar qq baryons.
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

2 Colour QCD

General Properties of 2cQCD (continued)

- In the gluon sector, the differences between SU(2) and SU(3) are expected to be less important
 - It is therefore a useful laboratory to study gluodynamics at \(\mu \neq 0 \), especially the issue of deconfinement at high density.

- The phase diagram has been studied with \(\chi PT \) (valid when \(m_\pi \ll m_\rho \)). The main results being:
 - For \(\mu \geq \mu_0 = m_\pi / 2 \) a baryon charge density develops along with a superfluid condensate \(\langle qq \rangle \neq 0 \).
 - For \(\mu \gtrsim \mu_0 \) the system is a dilute Bose-Einstein condensate of weekly interacting scalar qq baryons.
In the gluon sector, the differences between SU(2) and SU(3) are expected to be less important. It is therefore a useful laboratory to study gluodynamics at \(\mu \neq 0 \), especially the issue of deconfinement at high density.

The phase diagram has been studied with \(\chi PT \) (valid when \(m_\pi << m_\rho \)). The main results being:

- For \(\mu \geq \mu_0 = m_\pi / 2 \) a baryon charge density develops along with a superfluid condensate \(\langle qq \rangle \neq 0 \).
- For \(\mu \gtrsim \mu_0 \) the system is a dilute Bose-Einstein condensate of weekly interacting scalar qq baryons.
In the gluon sector, the differences between SU(2) and SU(3) are expected to be less important.

It is therefore a useful laboratory to study gluodynamics at \(\mu \neq 0 \), especially the issue of deconfinement at high density.

The phase diagram has been studied with \(\chi PT \) (valid when \(m_\pi \ll m_\rho \)). The main results being:

- For \(\mu \geq \mu_0 = m_\pi/2 \) a baryon charge density develops along with a superfluid condensate \(\langle qq \rangle \neq 0 \).
- For \(\mu \gtrsim \mu_0 \) the system is a dilute Bose-Einstein condensate of weakly interacting scalar qq baryons.
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Introduction and Motivation

2 Colour QCD

The Phase Diagram

Figure: A diagram taken from Kogut, Toublan and Sinclair 2002, of a proposed phase diagram for 2 colour QCD
Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
The aim is to numerically investigate the μ-axis of 2 colour QCD with 2 flavours of Wilson fermion.

Wilson not staggered because...

- Two-colour staggered lattice QCD has a different Goldstone spectrum to continuum 2cQCD (the pattern of global symmetry breaking is different)

- 4 flavours is uncomfortably close to the Banks-Zaks threshold

$$N_f = \frac{34N_c^3}{13N_c^2 - 3} \approx 5.6$$ (1)

where the second term of the β function changes sign.
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

The Big Program

Overview

The Aim

- The aim is to numerically investigate the μ-axis of 2 colour QCD with 2 flavours of Wilson fermion

- Wilson not staggered because...
 - Two-colour staggered lattice QCD has a different Goldstone spectrum to continuum 2cQCD (the pattern of global symmetry breaking is different)
 - 4 flavours is uncomfortably close to the Banks-Zaks threshold

$$N_f = \frac{34N_c^3}{13N_c^2 - 3} \simeq 5.6$$

where the second term of the β function changes sign
The aim is to numerically investigate the μ-axis of 2 colour QCD with 2 flavours of Wilson fermion

Wilson not staggered because...

- Two-colour staggered lattice QCD has a different Goldstone spectrum to continuum 2cQCD (the pattern of global symmetry breaking is different)

- 4 flavours is uncomfortably close to the Banks-Zaks threshold

$$N_f = \frac{34N_c^3}{13N_c^2 - 3} \approx 5.6$$ \hspace{1cm} (1)

where the second term of the β function changes sign
The aim is to numerically investigate the μ-axis of 2 colour QCD with 2 flavours of Wilson fermion.

Wilson not staggered because...

- Two-colour staggered lattice QCD has a different Goldstone spectrum to continuum 2cQCD (the pattern of global symmetry breaking is different).

- 4 flavours is uncomfortably close to the Banks-Zaks threshold.

\[
N_f = \frac{34N_c^3}{13N_c^2 - 3} \approx 5.6 \tag{1}
\]

where the second term of the β function changes sign.
Some Results of The Collaboration

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_o \approx m_\pi/2$,
 - Baryon density remains zero

2. A confined, bosonic superfluid phase, for $\mu_o < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.

3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Some Results of The Collaboration

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_0 \approx m_\pi / 2$,
 - Baryon density remains zero

2. A confined, bosonic superfluid phase, for $\mu_0 < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.

3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_o \approx m_\pi/2$,
 - Baryon density remains zero

2. A confined, bosonic superfluid phase, for $\mu_o < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.

3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_0 \approx m_\pi/2$,
 - Baryon density remains zero
2. A confined, bosonic superfluid phase, for $\mu_0 < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.
3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_o \approx m_\pi/2$,
 - Baryon density remains zero

2. A confined, bosonic superfluid phase, for $\mu_o < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.

3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Some Results of The Collaboration

Evidence for three distinct regions have been found:

1. A vacuum phase, for $\mu < \mu_o \approx m_\pi/2$,
 - Baryon density remains zero
2. A confined, bosonic superfluid phase, for $\mu_o < \mu < \mu_d$,
 - Characterised by Bose–Einstein condensation of scalar diquarks.
3. A deconfined phase, for $\mu > \mu_d$,
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, $k_F > E_F$.

Some Results of The Collaboration

Evidence for three distinct regions have been found:

1. A vacuum phase, for \(\mu < \mu_o \approx m_\pi / 2 \),
 - Baryon density remains zero

2. A confined, bosonic superfluid phase, for \(\mu_o < \mu < \mu_d \),
 - Characterised by Bose–Einstein condensation of scalar diquarks.

3. A deconfined phase, for \(\mu > \mu_d \),
 - Quarks and gluons are the dominant degrees of freedom
 - Evidence for a Fermi surface and non-zero binding energy, \(k_F > E_F \).

The $N_f = 2$ fermion action is given by

$$S = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2$$

$$- J \bar{\psi}_1 (C\gamma_5) \tau_2 \bar{\psi}_2^{tr} + J \psi_2^{tr} (C\gamma_5) \tau_2 \psi_1,$$ \hspace{1cm} (2)

where $M(\mu)$ is the usual Wilson fermion matrix

$$M_{xy}(\mu) = \delta_{xy} - \kappa \sum_\nu \left[(1 - \gamma_\nu) e^{\mu \delta_{\nu 0}} U_\nu(x) \delta_{y,x+\hat{\nu}}
ight.$$

$$\left. + (1 + \gamma_\nu) e^{-\mu \delta_{\nu 0}} U^\dagger_\nu(y) \delta_{y,x-\hat{\nu}} \right].$$ \hspace{1cm} (3)
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

The Big Program

Overview

The Lattice Formulation

The $N_f = 2$ fermion action is given by

$$S = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2$$

$$- J \bar{\psi}_1 (C\gamma_5)\tau_2 \bar{\psi}_2 + J \psi_2 (C\gamma_5)\tau_2 \psi_1,$$ (2)

where $M(\mu)$ is the usual Wilson fermion matrix

$$M_{xy}(\mu) = \delta_{xy} - \kappa \sum_\nu \left[(1 - \gamma_\nu) e^{\mu \delta_\nu^0} U_\nu(x) \delta_{y,x+\hat{\nu}} \right.$$

$$+ (1 + \gamma_\nu) e^{-\mu \delta_\nu^0} U_\nu^\dagger(y) \delta_{y,x-\hat{\nu}} \right].$$ (3)
J, \bar{J} are diquark source terms
- They lift the low-lying eigenmodes in the superfluid phase
- And enable the study of diquark condensation without any “partial quenching”.

In principle results should be extrapolated to the “physical” limit $J = \bar{J} = 0$
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

The Big Program

Overview

The Lattice Formulation (continued)

- J, \bar{J} are diquark source terms
 - They lift the low-lying eigenmodes in the superfluid phase
 - And enable the study of diquark condensation without any "partial quenching".

- In principle results should be extrapolated to the "physical" limit $J = \bar{J} = 0$
J, \bar{J} are diquark source terms
- They lift the low-lying eigenmodes in the superfluid phase
- And enable the study of diquark condensation without any “partial quenching”.

In principle results should be extrapolated to the “physical” limit $J = \bar{J} = 0$
J, \bar{J} are diquark source terms
- They lift the low-lying eigenmodes in the superfluid phase
- And enable the study of diquark condensation without any "partial quenching".

In principle results should be extrapolated to the "physical" limit $J = \bar{J} = 0$
Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:
- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Dublin All-to-All Propagators

To perform the hadron spectroscopy, the Trinlat approach to All-to-All propagators is used.

- Enables physics beyond the flavour non-singlet spectrum to be studied
- Maximise the information extracted from a single gauge configuration

Trinlat method:

- Generate a single noise vector for each quark
- Dilute and invert the daughter vectors
- Becomes exact in the “homeopathic” limit
- Trick is then to choose a clever dilution scheme to maximise signal for the minimum effort

Initial spectroscopy is of the following particles:

- **Mesons**
 - Isovector pseudovector ("pion"), vector ("rho") and axial-vector
 - Isoscalar scalar

- **Diquarks**
 - Isovector axial-vector
 - Isoscalar scalar

- The "Higgs and Goldstone" states
 - corresponding to the post-onset broken global $U(1)_V$ symmetry

- **"Kaons"**
 - Pseudovector (K), vector (K^*)
Initial spectroscopy is of the following particles:

Mesons
- Isovector pseudovector ("pion"), vector ("rho") and axial-vector
- Isoscalar scalar

Diquarks
- Isovector axial-vector
- Isoscalar scalar

The “Higgs and Goldstone” states
- corresponding to the post-onset broken global $U(1)_V$ symmetry

“Kaons”
- pseudovector (K), vector (K^*)
Particles

Initial spectroscopy is of the following particles:

- **Mesons**
 - Isovector pseudovector ("pion"), vector ("rho") and axial-vector
 - Isoscalar scalar

- **Diquarks**
 - Isovector axial-vector
 - Isoscalar scalar

- **The “Higgs and Goldstone” states**
 - corresponding to the post-onset broken global $U(1)_V$ symmetry

- **“Kaons”**
 - pseudovector (K), vector (K^*)
Initial spectroscopy is of the following particles:

- **Mesons**
 - Isovector pseudovector (“pion”), vector (“rho”) and axial-vector
 - Isoscalar scalar

- **Diquarks**
 - Isovector axial-vector
 - Isoscalar scalar

- **The “Higgs and Goldstone” states**
 - corresponding to the post-onset broken global $U(1)_V$ symmetry

- **“Kaons”**
 - pseudovector (K), vector (K^*)
Two-Flavour Kaons?

Estimates for the response of kaons can be made by measuring two propagators:

- One calculated in the usual way;
- The other from $\mu = 0$ inversions on the same $\mu \neq 0$ configuration;
 - i.e. this is partial quenching

Then stitch them together with the appropriate operators.

Note that the “strange” quark has the same mass as the normal one.
Estimates for the response of kaons can be made by measuring two propagators:

- One calculated in the usual way;
- The other from $\mu = 0$ inversions on the same $\mu \neq 0$ configuration;
 - i.e. this is partial quenching

Then stitch them together with the appropriate operators.

Note that the “strange” quark has the same mass as the normal one.
Two-Flavour Kaons?

Estimates for the response of kaons can be made by measuring two propagators:

- One calculated in the usual way;
- The other from $\mu = 0$ inversions on the same $\mu \neq 0$ configuration;
 - i.e. this is partial quenching

Then stitch them together with the appropriate operators.

Note that the “strange” quark has the same mass as the normal one
Two-Flavour Kaons?

Estimates for the response of kaons can be made by measuring two propagators:

- One calculated in the usual way;
- The other from $\mu = 0$ inversions on the same $\mu \neq 0$ configuration;
 - i.e. this is partial quenching

Then stitch them together with the appropriate operators.

Note that the “strange” quark has the same mass as the normal one
Two-Flavour Kaons?

Estimates for the response of kaons can be made by measuring two propagators:

- One calculated in the usual way;
- The other from $\mu = 0$ inversions on the same $\mu \neq 0$ configuration;
 - i.e. this is partial quenching

Then stitch them together with the appropriate operators.

Note that the “strange” quark has the same mass as the normal one
But why 2-colour Kaons?

Currently there is great interest in “Deeply bound Kaonic states” in the Nuclear physics community

- both from the theory side
- and experiment, KEK, LNF, GSI, BNL

One obvious area where such exotic states have big implications is in astrophysics

- Strange quark stars etc.

So the question of what happens to the mass of partially quenched 2-colour kaons in a dense medium, is an interesting one
But why 2-colour Kaons?

Currently there is great interest in “Deeply bound Kaonic states” in the Nuclear physics community

- both from the theory side
- and experiment, KEK, LNF, GSI, BNL

One obvious area where such exotic states have big implications is in astrophysics

- Strange quark stars etc.

So the question of what happens to the mass of partially quenched 2-colour kaons in a dense medium, is an interesting one
But why 2-colour Kaons?

Currently there is great interest in “Deeply bound Kaonic states” in the Nuclear physics community

- both from the theory side
- and experiment, KEK, LNF, GSI, BNL

One obvious area where such exotic states have big implications is in astrophysics

- Strange quark stars etc.

So the question of what happens to the mass of partially quenched 2-colour kaons in a dense medium, is an interesting one
Finite μ Predictions

- Predictions for the pion from Chiral perturbation theory

- An effective model with spin 1 particles, has predictions for the rho
Finite μ Predictions

- Predictions for the pion from Chiral perturbation theory

- An effective model with spin 1 particles, has predictions for the rho
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Outline

1. Introduction and Motivation
 - Dense QCD and the Lattice
 - 2 Colour QCD

2. The Big Program
 - Overview
 - 2 Colour Spectroscopy

3. Results
 - Set up
 - Preliminary Results
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Results

Set up

Lattice Parameters

- All results were calculated on a $8^3 \times 16$ lattice
- $\beta = 1.7$, $\kappa = 0.178$
 - $a = 0.220(4)\,fm$, $m_\pi a = 0.79(1)$, $m_\pi/m_\rho = 0.80(1)$
- $j = 0.04$ unless otherwise stated ($j = J/\kappa$)
- The noise vectors were diluted in time, spin and flavour
- 100-400 configurations were typically used, (the larger μ values having the highest statistics)
- All results presented include only the connected parts
Results

Set up

Lattice Parameters

- All results were calculated on a $8^3 \times 16$ lattice
- $\beta = 1.7$, $\kappa = 0.178$
 - $a = 0.220(4)\text{fm}$, $m_\pi a = 0.79(1)$, $m_\pi / m_\rho = 0.80(1)$
- $j = 0.04$ unless otherwise stated ($j = J/\kappa$)

- The noise vectors were diluted in time, spin and flavour
- 100-400 configurations were typically used, (the larger μ values having the highest statistics)
- All results presented include only the connected parts
Results

Set up

Lattice Parameters

- All results were calculated on a $8^3 \times 16$ lattice
- $\beta = 1.7$, $\kappa = 0.178$
 - $a = 0.220(4)\text{fm}$, $m_\pi a = 0.79(1)$, $m_\pi/m_\rho = 0.80(1)$
- $j = 0.04$ unless otherwise stated ($j = J/\kappa$)
- The noise vectors were diluted in time, spin and flavour
- 100-400 configurations were typically used, (the larger μ values having the highest statistics)
- All results presented include only the connected parts
Results

Set up

Lattice Parameters

- All results were calculated on a $8^3 \times 16$ lattice
- $\beta = 1.7$, $\kappa = 0.178$
- $a = 0.220(4) \text{ fm}$, $m_\pi a = 0.79(1)$, $m_\pi / m_\rho = 0.80(1)$

- $j = 0.04$ unless otherwise stated ($j = J/\kappa$)

- The noise vectors were diluted in time, spin and flavour

- 100-400 configurations were typically used, (the larger μ values having the highest statistics)

- All results presented include only the connected parts
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Results

Set up

Lattice Parameters

- All results were calculated on a $8^3 \times 16$ lattice
- $\beta = 1.7$, $\kappa = 0.178$
 - $a = 0.220(4)\text{ fm}$, $m_\pi a = 0.79(1)$, $m_\pi / m_\rho = 0.80(1)$
- $j = 0.04$ unless otherwise stated ($j = J/\kappa$)
- The noise vectors were diluted in time, spin and flavour
- 100-400 configurations were typically used, (the larger μ values having the highest statistics)
- All results presented include only the connected parts
Outline

1. Introduction and Motivation
 • Dense QCD and the Lattice
 • 2 Colour QCD

2. The Big Program
 • Overview
 • 2 Colour Spectroscopy

3. Results
 • Set up
 • Preliminary Results
Mesons (connected diagrams only, $j = 0.04$)
Meson Analysis

Before onset the pion and rho states remain (more or less) constant

Qualitatively follow the predictions from χPT and the spin-1 effective model
- pion seems to increase too early
- rho a little late

States become increasingly noisy as μ increases

Isoscalar scalar and isovector axial vector mesons both decrease rapidly in the vacuum phase and remain light post onset
Diquarks (connected diagrams only, $j = 0.04$)
In the vacuum phase the diquarks scale as $\pm 2\mu$ as one would naively expect.

For $\mu > 0.25$ the heavier of each diquark pair become impossible to fit.

Post onset they appear to remain constant.
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Results

Preliminary Results

Isoscalar Scalar Diquark Correlators

Graph showing the isoscalar scalar diquark correlators for different values of chemical potential (μ) and spatial separation (dt). The data points are connected by lines of different colors and styles, indicating the variation with μ. The graph plots the correlator values on a logarithmic scale against dt.
Preliminary Results

Higgs and Goldstone
Below onset it doesn’t make sense to distinguish between the higgs and goldstone

For $\mu > 0.4$ the states:

- Develop a mass splitting
- Scale differently with J

The mass of the goldstone appears to scale to zero in this phase (well at $\mu = 0.5$ at least)
The Hadronic Spectrum of 2-colour QCD at Non-zero Chemical Potential

Results

Preliminary Results

Kaons ($j = 0.04$)
As with the diquarks the heavier of each kaon pair rapidly becomes impossible to fit for $\mu \neq 0$

- Initially at least the kaons scale as $\pm \mu$
- In the dense phase the state is certainly lighter than that in vacuum ($\mu = 0$)
 - So would be bound if one was created in a blob of dense su(2) matter...
- Interestingly as μ increases post onset the kaonic state becomes heavier
A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention
A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention
Concluding Remarks and Outlook

A wide selection of hadronic states have been simulated and their response to μ investigated.

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention.
A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook
- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention
Concluding Remarks and Outlook

A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention
Concluding Remarks and Outlook

A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention
A wide selection of hadronic states have been simulated and their response to μ investigated

Outlook

- More statistics
- Analysis of the disconnected terms
- Investigation of various smearing techniques
- A push to higher μ to look for signs of deconfinement

Thank you for your attention