QCD finite T transition with Wilson fermions

(Comparison between Wilson and staggered results)

Y. Aokia, Z. Fodorb,c, S. D. Katzb,c, K. K. Szabób, B. C. Tóthc

a Brookhaven National Laboratory, USA
b University of Wuppertal, Germany
c Eötvös Lorand University, Budapest, Hungary
Outline

- Motivation and aims
- Action parameters
- Setting the scale
 - scale for staggered calculations
 - scale for Wilson calculations
- Results for quark number susceptibility
- Conclusions
Motivation and aims

Motivation:
- Debate whether staggered is good or not
- There are many ”insensitive” tests (eg. spectrum)

Aim:
- Do a sensitive test
- Sensitive quantity: χ_s
 - quenched: 1st order \rightarrow derivative is infinite
 - unquenched: cross-over \rightarrow derivative is finite (but unknown)
 - $m_q = 0$: derivative is infinite
Action parameters

- tree-level Symanzik improved gauge action
- stout smearing
 - Wilson: 3 steps, $\varrho = 0.1$
 - staggered: 2 steps, $\varrho = 0.15$
- clover improved Wilson fermions, $c = 1.0$
- staggered fermions
- $n_f = 3$, $m \approx m_s/3$
- Wilson: $\beta = 3.2 - 3.7$
 - staggered: $\beta = 3.5 - 4.0$
- Lattice sizes: $32^3 \times 8$ and $32^3 \times 10$
- algorithm: RHMC
Setting the scale

- \(n_f = 3 \)

- \(\frac{m_{PS}}{m_V} = 0.5 \quad \rightarrow \quad m \approx m_s/3 \)

- scale is defined via \(m_V \) for comparison between staggered and Wilson results
Scale for staggered calculations
Scale for Wilson calculations

\[\kappa = \frac{1}{8r + 2am_{\text{bare}}} \]
Quark number susceptibility

- quantity to measure: quark number susceptibility

\[
\frac{\chi_s}{T^2} = \frac{1}{TV} \frac{\partial^2 \log Z}{\partial \mu_s^2} \bigg|_{\mu_s=0}
\]

- no renormalization needed
 \[\implies\] results of different actions can be easily compared

- maximum of derivative: one definition for \(T_c\)

- derivative gives a sensitive test
Quark number susceptibility

\[\chi_s \]

\[T/m_v \]

- \(N_t=8 \) Wilson
- \(N_t=10 \) Wilson
- \(N_t=8 \) staggered
- \(N_t=10 \) staggered
Quark number susceptibility

\[\frac{d\chi_s}{d(T/m_v)} \]

- \(N_t=8 \) W.
- \(N_t=10 \) W.
- \(N_t=8 \) st.
- \(N_t=10 \) st.

\(T/m_v \)
Conclusions

- $N_t = 8$: staggered and Wilson results differ

- $N_t = 10$: staggered and Wilson results get closer to each other

- to be conclusive: $N_t = 12$ needed