The phase diagram of QCD at finite isospin density

Urs Wenger (ETH Zürich)

with

Ph. de Forcrand (ETH Zürich, CERN)
M. Stephanov (Illinois)

QCD at finite isospin density

- Special case of the physically relevant situation,
- Platform to assess limitations of various numerical approaches to finite baryon density,
- Provides a rich range of physical phenomena:
 - pion gas at low temperature and density,
 - quark gas at high temperature,
 - Bose condensation of charged pions at large density.
Transition from hadronic to quark degrees of freedom
⇒ due to a large density of a conserved charge.

- system does not carry baryon number,
- chemical potentials of two degenerate quarks u and d are equal in magnitude, $|\mu_I|/2$, but opposite in sign,
- accessible by lattice simulations.

Positivity of the theory is guaranteed by

$$\tau_1 \gamma_5 D \gamma_5 \tau_1 = D^\dagger.$$

Using this positivity and QCD inequalities [Son & Stephanov]:
⇒ symmetry breaking must be driven by $\langle \bar{\psi} i \gamma_5 \tau_1, 2\psi \rangle$,
i.e. $\pi^- \sim \bar{u} \gamma_5 d$, $\pi^+ \sim \bar{d} \gamma_5 u$ states.
At small isospin densities one can use chiral perturbation theory

\[\mathcal{L} = \frac{1}{4} f_{\pi}^2 \text{Tr}[\partial_\mu \Sigma \partial_\mu \Sigma^\dagger - 2m_{\pi}^2 \text{Re} \Sigma] \]

where \(\Sigma \in \text{SU}(2) \) is the matrix pion field:

- \(\mu_I \) breaks \(\text{SU}(2)_{L+R} \rightarrow \text{U}(1)_{L+R} \),
- no additional low energy constant needed (to leading order),
- interesting physics for \(m_{\pi} < \mu_I < m_{\rho} \).

Effective potential can be minimised as a function of \(\mu_I \) using

\[\overline{\Sigma} = \cos \alpha + i(\tau_1 \cos \phi + \tau_2 \sin \phi) \sin \alpha, \]

- flavour rotation angle \(\phi \) irrelevant.
Two distinct regimes can be identified.

- \(|\mu_I| < m_\pi\):
 - no pion can be excited,
 - \(\bar{\Sigma} = 1\), i.e. \(\langle \bar{u}u + \bar{d}d \rangle = 2\langle \bar{\psi}\psi \rangle_0\)
 - normal QCD vacuum.

- \(|\mu_I| \geq m_\pi\):
 - \(\pi^-\) particles can be excited,
 - a Bose condensate of \(\pi^-\) forms where \(\langle \bar{u}\gamma_5d \rangle \neq 0\),
 - chiral condensate rotates into pion condensate as a function of \(\mu_I\),
 - \(\pi^-\) becomes massless, \(\pi^+, \pi^0\) remain massive.

At \(|\mu_I| > m_\rho\) chiral perturbation theory breaks down.
Energies \(m \) to excite a pion from the vacuum at low temperature:

\[
\begin{align*}
\pi^- & \quad \text{at } \mu_I = m_\pi \quad \text{the } \pi^- \text{ Bose condense.}
\end{align*}
\]
'Equation of state' (EoS) : density as a function of isospin chemical potential:

\[\rho_I = \frac{Q}{V} = \rho_I(\hat{\mu}_I) \]

where \(\hat{\mu}_I = \frac{\mu_I}{T} \).

Accessible from \textit{canonical simulations} is the free energy \(F(Q) = -\ln Z_C(Q) \) and its derivative

\[F(Q) - F(Q - 1) \xrightarrow{V \to \infty} \frac{dF}{d\rho_I} = \mu_I. \]
EoS for free bosons, i.e. pions at low density:

\[
\rho(\hat{\mu}, \hat{m}) = \frac{T^3}{2\pi^2} \int_0^{+\infty} d\hat{p} \hat{p}^2 \left(\frac{1}{e^{(\omega - \hat{\mu})} - 1} - \frac{1}{e^{(\omega + \hat{\mu})} - 1} \right)
\]

where \(\omega = \sqrt{\hat{p}^2 + \hat{m}^2} \).
EoS for interacting Bose gas, i.e. Bose condensate at $T = 0$:

$$\rho_I = f^2_\pi \mu_I \left(1 - \left(\frac{m_\pi}{\mu_I}\right)^4\right)$$
EoS for interacting Bose gas at low T:

⇒ interaction pushes critical density down
EoS for a massless, free Fermi gas via the pressure:

\[
\frac{P(\mu_I) - P(\mu_I = 0)}{T^4} = \frac{1}{2} \left(\frac{\mu_I}{T} \right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_I}{T} \right)^4.
\]
Lattice simulation details

- \(N_f = 4 + 4 \), i.e. 2 staggered fermions on \(8^3 \times 4 \) at \(am = 0.14 \):
 \[\Rightarrow \text{deconfinement transition at } \mu = 0 \text{ is } 1^{\text{st}} \text{ order} \]

- Temperature ranges between \(\frac{1}{2} T_c \leq T \leq T_c \),

- Pion mass \(am_\pi \) changes only by few percent:
 \[\Rightarrow m_\pi / T \sim \text{constant} \]

- Combine 68 ensembles at 6 values of \(\mu \) up to \(\mu / T \leq 4 \) with Ferrenberg-Swendsen reweighting.
Free energy

\[\frac{\Delta F}{T} \sim \frac{\mu}{T} \]

- Bose condensate
- Free Fermi gas

QCD at finite isospin density

Urs Wenger
Free energy

\[\frac{\Delta F}{T} - \frac{\mu}{T} \]

\[m_\pi / T \]

\[Q \]

\[\Delta F/T \sim \mu/T \]

Bose condensate

Free Fermi gas

Urs Wenger QCD at finite isospin density
Free energy

\[\Delta F/T \sim \mu/T \]

- Bose condensate
- Free Fermi gas

QCD at finite isospin density
Free energy

\[\Delta F/T = \mu/T \]

- Bose condensate
- Free Fermi gas
Free energy

Numerical results

Free energy

Phase diagram

Bose condensation

Introduction

Expectations

Free energy

Phase diagram

Bose condensation

Free energy

Free Fermi gas

Bose condensate

QCD at finite isospin density
Free energy

\[\Delta F/T - \mu/T \]

\[m_\pi/T \]

\[\Delta F/T \sim \mu/T \]

Bose condensate
Free Fermi gas

Introduction
Expectations
Numerical results
Free energy
Phase diagram
Bose condensation

Urs Wenger
QCD at finite isospin density
Free energy

- Free energy
- Phase diagram
- Bose condensation

- Introduction
- Expectations
- Numerical results

Free Fermi gas

\(\frac{m_\pi}{T} \)

\(\Delta F/T - \mu/T \)

\(Q \)

Bose condensate

Urs Wenger

QCD at finite isospin density
Free energy

Bose condensate
Free Fermi gas

\[\Delta F/T - \mu T \]

\[m_\pi/T \]

\[Q \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

Urs Wenger QCD at finite isospin density
Free energy

\[\Delta F/T \sim \mu/T \]

Bose condensate
Free Fermi gas

Urs Wenger QCD at finite isospin density
Free energy

The graph shows the free energy $\Delta F/T$ as a function of Q, with m_π/T on the y-axis and Q on the x-axis. The graph includes two curves:

- **Dashed blue line** represents the Bose condensate.
- **Solid red line** represents the Free Fermi gas.

The free energy is given by μ/T, where μ is the chemical potential.
Free energy

\[\Delta F/T \sim \mu/T \]

\[m_\pi/T \]

- Bose condensate
- Free Fermi gas

Urs Wenger
QCD at finite isospin density
Phase diagram

Plasma phase

Hadronic phase

BEC

\(\mu / T \)

\(\beta \)

\(m_\pi / T \)

Urs Wenger

QCD at finite isospin density
Phase diagram

- Plasma phase
- Hadronic phase
- Bose condensation (BEC)

QCD at finite isospin density

Urs Wenger
Phase diagram

Plasma phase

Hadronic phase

\[\beta \]

\[\mu/T \]

\[m_\pi/T \]

Gluodynamics (MC)

Quadratic fit

Quartic fit

BEC

QCD at finite isospin density
Phase diagram

![Graph showing phase transitions in QCD at finite isospin density. The graph plots the plasma phase transition and Bose condensation against the chemical potential (μ/T) and inverse temperature (β). Quadratic and quartic fits are shown, with data points indicating the critical points.]
Phase diagram

Plasma phase

- GC MC
- Quadratic fit
- Quartic fit
- Critical point

Free energy
Phase diagram
Bose condensation

Introduction
Expectations
Numerical results

QCD at finite isospin density

Urs Wenger
Bose condensation

Transition from BEC to the Fermi gas:
⇒ measure pion susceptibility χ_{π^-}

![Graph showing the transition from Bose-Einstein condensation (BEC) to the Fermi gas, with measures of pion susceptibility χ_{π^-} for different isospin densities μ.]
Bose condensation

Rescale to recover universal behaviour:

![Graph showing Bose condensation](image-url)
Universality class of the 3d \textit{xy}-model:

\[\chi_{\pi} = \mu \]

\[\mu = 0.48 \quad \mu = 0.50 \quad \mu = 0.55 \quad \mu = 0.60 \]

\[3d \text{ xy, } L=12 \Rightarrow \text{good agreement} \]
Reweighting from $\mu = 0$ ensembles alone gives unreliable results.
Reweighting from $\mu = 0$ ensembles alone gives unreliable results.

Average sign of the determinant:
We determined the **EoS and the phase diagram** of $N_f = 4 + 4$ QCD **at finite isospin density** and finite temperature.

We exposed the two mechanisms at work:
- Bose condensation at high density,
- deconfinement at high temperature.

Implications for the baryonic density case.