$B-B$ Mixing with Domain Wall Fermions

Jan Wennekers

School of Physics, PPT

Regensburg 03/08/2007
work within UKQCD and RBC collaborations

Edinburgh: Peter Boyle, Luigi Del Debbio, JW
Southampton: Conrado Albertus Torres, Jonathan Flynn, Chris Sachrajda
Columbia: Oleg Loktik, Thomas Dumitrescu, Norman Christ
BNL: Yasumichi Aoki, Amarjit Soni
Kanazawa: Taku Izubuchi
Outline

1. Motivation
2. The Static Approximation on the Lattice
3. Numerical Results
4. Summary
Outline

1 Motivation

2 The Static Approximation on the Lattice

3 Numerical Results

4 Summary
Meson Mixing in the Standard Model

- box diagram with top quark dominant contribution

\[\Delta m_q = -\frac{1}{6\pi^2} \left(G_F^2 m_W^2 \eta_B S_0 \right) m_{B_q} B_{B_q} f_{B_q}^2 (V_{tq}^* V_{tb})^2 \]

- non-perturbative part: \(B_{B_q} f_{B_q}^2 \)
- to extract CKM matrix elements:

\[\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2, \quad \text{with} \quad \xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}} \]
B Meson Mixing in the Standard Model

- box diagram with top quark dominant contribution

\[\Delta m_q = -\frac{1}{6\pi^2} \left(G_F^2 m_W^2 \eta_B S_0 \right) m_{B_q} B_{B_q} f_{B_q}^2 (V_{tq}^* V_{tb})^2 \]

- non-perturbative part: $B_{B_q} f_{B_q}^2$
- to extract CKM matrix elements:

\[\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}, \quad \text{with} \quad \xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}} \]
\[\Delta m_q = -\frac{1}{6\pi^2} \left(G_F^2 m_W^2 \eta_B S_0 \right) m_{Bq} B_{Bq} f_{Bq}^2 (V_{tq}^* V_{tb})^2 \]

- box diagram with top quark dominant contribution

- non-perturbative part: \(B_{Bq} f_{Bq}^2 \)
- to extract CKM matrix elements:

\[\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| V_{ts} \right|^2, \quad \text{with} \quad \xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}} \]
B Meson Mixing in the Standard Model

- box diagram with top quark dominant contribution

\[\Delta m_q = -\frac{1}{6\pi^2} \left(G_F^2 m_W^2 \eta_B S_0 \right) m_{Bq} B_{Bq} f_{Bq}^2 (V_{tq}^* V_{tb})^2 \]

- non-perturbative part: $B_{Bq} f_{Bq}^2$
- to extract CKM matrix elements:

\[\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^2}{f_{Bd}^2} \frac{V_{ts}^2}{|V_{td}|^2}, \quad \text{with} \quad \xi^2 = \frac{f_{Bs}^2 B_{Bs}}{f_{Bd}^2 B_{Bd}} \]
\[\Delta m_q = - \frac{1}{6\pi^2} \left(G_F m_W^2 \eta_B S_0 \right) m_{Bq} B_{Bq} f_{Bq}^2 (V_{tq} V_{tb})^2 \]

- box diagram with top quark dominant contribution

- non-perturbative part: \(B_{Bq} f_{Bq}^2 \)

- to extract CKM matrix elements:

\[\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}, \quad \text{with} \quad \xi^2 = \frac{f_{B_s}^2 B_{Bs}}{f_{B_d}^2 B_{Bd}} \]
Constrains on the Unitarity Triangle

- summary of constraints on “unitarity triangle”
- circles from B and B_s mixing
- uncertainty totally dominated by theory error on matrix elements

$$\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007\,(\text{exp}) + 0.0081 - 0.0060\,(\text{theo})$$

[CDF, 2006]

We (the people in this room) have a lot of work to do to make this look less embarassing
Constrains on the Unitarity Triangle

- summary of constraints on “unitarity triangle”
- circles from B and B_s mixing
- uncertainty totally dominated by theory error on matrix elements

\[\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007 \text{(exp)} + 0.0081 - 0.0060 \text{(theo)} \]

[CDF, 2006]

We (the people in this room) have a lot of work to do to make this look less embarassing
Constrains on the Unitarity Triangle

- summary of constraints on “unitarity triangle”
- circles from B and B_s mixing
- uncertainty totally dominated by theory error on matrix elements

\[\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007 \text{(exp)} + 0.0081 - 0.0060 \text{(theo)} \]

[CDF, 2006]

We (the people in this room) have a lot of work to do to make this look less embarrassing.
Constrains on the Unitarity Triangle

summary of constraints on “unitarity triangle”
circles from B and B_s mixing
uncertainty totally dominated by theory error on matrix elements

\[\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007\text{(exp)} + 0.0081 - 0.0060\text{(theo)} \]

[CDF, 2006]

We (the people in this room) have a lot of work to do to make this look less embarrassing
Constrains on the Unitarity Triangle

- summary of constraints on “unitarity triangle”
- circles from B and B_s mixing
- uncertainty totally dominated by theory error on matrix elements

\[
\left| \frac{V_{td}}{V_{ts}} \right| = 0.2060 \pm 0.0007 \text{(exp)} + 0.0081 - 0.0060 \text{(theo)} \]

[CDF, 2006]

We (the people in this room) have a lot of work to do to make this look less embarassing
Outline

1. Motivation

2. The Static Approximation on the Lattice

3. Numerical Results

4. Summary
The Static Action

- limit of infinite b-quark mass
- lattice action: $S_h = a^4 \sum_x \bar{\psi}_h(x) D_0 \psi_h(x)$, D_0 covariant derivative in time direction

static propagator:

$$G_h(x, y) = \theta(x_0 - y_0) \delta(\vec{x} - \vec{y}) \mathcal{P}(y, x)^\dagger P_+,$$

$$\mathcal{P}(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_\mu(x + i\hat{\mu})$$

$$P_+ = \frac{1}{2}(1 + \gamma_0)$$

- divergence in self-energy of the static quark
- introduce counterterm: $(D_0 + \delta m) \tilde{G}_h(x, y) = \delta(x - y) P_+$
- propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)^{(x_0 - y_0)}$
The Static Action

- limit of infinite b-quark mass
- lattice action: $S_h = a^4 \sum_x \bar{\psi}_h(x)D_0\psi_h(x)$, D_0 covariant derivative in time direction

static propagator:

$$G_h(x, y) = \theta(x_0 - y_0)\delta(\vec{x} - \vec{y})\mathcal{P}(y, x)^\dagger P_+,$$

$$\mathcal{P}(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_\mu(x + i\hat{\mu})$$

$$P_+ = \frac{1}{2}(1 + \gamma_0)$$

- divergence in self-energy of the static quark
- introduce counterterm: $(D_0 + \delta m)\tilde{G}_h(x, y) = \delta(x - y)P_+$
- propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)^{(x_0 - y_0)}$
The Static Action

- limit of infinite b-quark mass
- lattice action: $S_h = a^4 \sum_x \overline{\psi}_h(x) D_0 \psi_h(x)$, D_0 covariant derivative in time direction

[\text{Eichten, Hill, 1989}]

- static propagator:

\[
G_h(x, y) = \theta(x_0 - y_0) \delta(\vec{x} - \vec{y}) \mathcal{P}(y, x)^\dagger P_+,
\]

\[
\mathcal{P}(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_\mu(x + i\hat{\mu})
\]

\[
P_+ = \frac{1}{2}(1 + \gamma_0)
\]

- divergence in self-energy of the static quark
- introduce counterterm: $(D_0 + \delta m) \tilde{G}_h(x, y) = \delta(x - y)P_+$
- propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)^{x_0 - y_0}$
The Static Action

- Limit of infinite b-quark mass
- Lattice action: $S_h = a^4 \sum_x \overline{\psi}_h(x) D_0 \psi_h(x)$, D_0 covariant derivative in time direction

 \[G_h(x, y) = \theta(x_0 - y_0)\delta(x - y) P(y, x)^\dagger P_+ , \]

 \[P_+ = \frac{1}{2}(1 + \gamma_0) \]

- Static propagator:

 \[P(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_\mu(x + i\hat{\mu}) \]

 \[\mathcal{P}(y, x) = P(y, x)^\dagger P_+ \]

- Divergence in self-energy of the static quark

 - Introduce counterterm: $(D_0 + \delta m)\tilde{G}_h(x, y) = \delta(x - y)P_+$
 - Propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)(x_0 - y_0)$

 \[\tilde{G}_h(x, y) = \frac{1}{2}\gamma_0 \theta(x_0 - y_0) \delta(x - y) P_+ \]

 \[\mathcal{P}(y, x) = P(y, x)^\dagger P_+ \]
The Static Action

- limit of infinite b-quark mass
- lattice action: $S_h = a^4 \sum_x \bar{\psi}_h(x) D_0 \psi_h(x)$, D_0 covariant derivative in time direction

static propagator:

$$G_h(x, y) = \theta(x_0 - y_0) \delta(\vec{x} - \vec{y}) \mathcal{P}(y, x)^\dagger P_+,$$

$$\mathcal{P}(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_{\mu}(x + i\hat{\mu})$$

$$P_+ = \frac{1}{2}(1 + \gamma_0)$$

- divergence in self-energy of the static quark
- introduce counterterm: $(D_0 + \delta m) \tilde{G}_h(x, y) = \delta(x - y) P_+$

propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)^{(x_0 - y_0)}$
The Static Action

- limit of infinite b-quark mass
- lattice action: $S_h = a^4 \sum_x \bar{\psi}_h(x) D_0 \psi_h(x)$,
 D_0 covariant derivative in time direction

 [Eichten, Hill, 1989]

- static propagator:

 $$G_h(x, y) = \theta(x_0 - y_0) \delta(\vec{x} - \vec{y}) P(y, x)^\dagger P_+,$$

 $$P(x, x + n\hat{\mu}) = \prod_{i=0}^{n-1} U_\mu(x + i\hat{\mu})$$

 $$P_+ = \frac{1}{2}(1 + \gamma_0)$$

- divergence in self-energy of the static quark
- introduce counterterm: $(D_0 + \delta m) \tilde{G}_h(x, y) = \delta(x - y) P_+$
- propagator falls exponentially: $\tilde{G}_h = G_h \times (1 + \delta m)^{(x_0 - y_0)}$
Smeared Gauge Actions

- lattice action can be changed without changing continuum limit
 - only way here: smearing of gauge field
 - two possible choices:

 APE smearing:
 - replace link by sum of staples
 - $SU(3)$ projection

 Hypercubic blocking (HYP):
 - 3 steps of APE smearing
 - restricted to the hypercube around the original link
 - [Hasenfratz & Knechtli, 2001]

 3 parameters, we choose
 \[(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5) \]
 - [ALPHA, Della Morte et al., 2004]
Smeared Gauge Actions

- lattice action can be changed without changing continuum limit
- only way here: smearing of gauge field

- two possible choices:

APE smearing: replace link by sum of staples
+ $SU(3)$ projection

Hypercubic blocking (HYP): 3 steps of APE smearing
restricted to the hypercube around the original link

[Hasenfratz & Knechtli, 2001]

3 parameters, we choose
$(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

[ALPHA, Della Morte et al., 2004]
lattice action can be changed without changing continuum limit
only way here: smearing of gauge field
two possible choices:

APE smearing: replace link by sum of staples + $SU(3)$ projection

Hypercubic blocking (HYP): 3 steps of APE smearing restricted to the hypercube around the original link

[Hasenfratz & Knechtli, 2001]

3 parameters, we choose $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

[ALPHA, Della Morte et al., 2004]
Smeared Gauge Actions

- lattice action can be changed without changing continuum limit
- only way here: smearing of gauge field
- two possible choices:

APE smearing: replace link by sum of staples + $SU(3)$ projection

Hypercubic blocking (HYP): 3 steps of APE smearing restricted to the hypercube around the original link

[Hasenfratz & Knechtli, 2001]

3 parameters, we choose $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

[ALPHA, Della Morte et al., 2004]
Smeared Gauge Actions

- lattice action can be changed without changing continuum limit
- only way here: smearing of gauge field
- two possible choices:

APE smearing: replace link by sum of staples + $SU(3)$ projection

Hypercubic blocking (HYP): 3 steps of APE smearing restricted to the hypercube around the original link

[Hasenfratz & Knechtli, 2001]

3 parameters, we choose

$(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

[ALPHA, Della Morte et al., 2004]
Comparing Gauge Smearings

- heavy-light two-point correlation function with different smearings

- Eichten-Hill: no smearing
- APE smearing with $\alpha = 1.0$
- HYP1: $(\alpha_1, \alpha_2, \alpha_3) = (0.75, 0.6, 0.3)$
- HYP2: $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

- confirmation of ALPHA results, independent of light quark action
- test of our implementation of static action
Comparing Gauge Smearings

- heavy-light two-point correlation function with different smearings

- Eichten-Hill: no smearing
- APE smearing with $\alpha = 1.0$
- HYP1: $(\alpha_1, \alpha_2, \alpha_3) = (0.75, 0.6, 0.3)$
- HYP2: $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

- confirmation of ALPHA results, independent of light quark action
- test of our implementation of static action
Comparing Gauge Smearings

- heavy-light two-point correlation function with different smearings

- Eichten-Hill: no smearing
- APE smearing with $\alpha = 1.0$
- HYP1: $(\alpha_1, \alpha_2, \alpha_3) = (0.75, 0.6, 0.3)$
- HYP2: $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

- confirmation of ALPHA results, independent of light quark action
- test of our implementation of static action
Comparing Gauge Smearings

- heavy-light two-point correlation function with different smearings

- Eichten-Hill: no smearing
- APE smearing with $\alpha = 1.0$
- HYP1: $(\alpha_1, \alpha_2, \alpha_3) = (0.75, 0.6, 0.3)$
- HYP2: $(\alpha_1, \alpha_2, \alpha_3) = (1.0, 1.0, 0.5)$

- confirmation of ALPHA results, independent of light quark action
- test of our implementation of static action
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at $s = 0$, right-handed modes at $s = L_s$, exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

$$m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5 (x) \pi(0) \rangle}$$

- here: $m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV}$
- off-shell $O(a)$-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at $s = 0$, right-handed modes at $s = L_s$, exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

$$m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}$$

- here: $m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV}$
- off-shell $O(a)$-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at \(s = 0 \), right-handed modes at \(s = L_s \), exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

\[
m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}
\]

- here: \(m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV} \)
- off-shell \(O(a) \)-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at \(s = 0 \), right-handed modes at \(s = L_s \), exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

\[
m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}
\]

here: \(m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV} \)

- off-shell \(O(a) \)-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at \(s = 0 \), right-handed modes at \(s = L_s \), exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

\[
m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}
\]

- here: \(m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV} \)
 - off-shell \(O(a) \)-improved, well suited for NPR in RI-MOM scheme
 - renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at $s = 0$, right-handed modes at $s = L_s$, exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

$$m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5 q(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}$$

- here: $m_{\text{res}} = 0.00308(4) \approx 5 \text{ MeV}$
- off-shell $O(a)$-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Domain Wall Fermions

- five dimensional formulation which has approximate chiral symmetry
- left-handed modes are bound to 4-D brane at $s = 0$, right-handed modes at $s = L_s$, exponentially suppressed overlap
- measure of chiral symmetry breaking: violation of 5-D Ward Identity:

$$m_{\text{res}} = \lim_{m \to 0} \frac{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}{\langle \sum \bar{x} J_5(x) \pi(0) \rangle}$$

- here: $m_{\text{res}} = 0.00308(4) \approx 5$ MeV
- off-shell $O(a)$-improved, well suited for NPR in RI-MOM scheme
- renormalisation simplified by reduced operator mixing
Renormalisation

- consider parity conserving operator $V^\mu V_\mu + A^\mu A_\mu$
- static approximation leads to mixing

$$O_{VV+AA}^{\text{ren}} = Z_{VA} O_{VV+AA} + Z_{SP} O_{SS+PP}$$

- perturbative results for APE and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>Z_Φ</th>
<th>Z_{VA}</th>
<th>Z_{SP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>-0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>-0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>-0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>-0.122998</td>
</tr>
</tbody>
</table>

- non-perturbative renormalisation à la Rome-Southampton
 → work in progress
consider parity conserving operator $V^\mu V_\mu + A^\mu A_\mu$

static approximation leads to mixing

$$O^{\text{ren}}_{VV+AA} = Z_{VA}O_{VV+AA} + Z_{SP}O_{SS+PP}$$

perturbative results for APE and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>Z_Φ</th>
<th>Z_{VA}</th>
<th>Z_{SP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>−0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>−0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>−0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>−0.122998</td>
</tr>
</tbody>
</table>

non-perturbative renormalisation à la Rome-Southampton

→ work in progress
Renormalisation

- consider parity conserving operator $V^\mu V_\mu + A^\mu A_\mu$
- static approximation leads to mixing

$$O^\text{ren}_{VV+AA} = Z_{VA} O_{VV+AA} + Z_{SP} O_{SS+PP}$$

- perturbative results for APE and and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>Z_Φ</th>
<th>Z_{VA}</th>
<th>Z_{SP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>-0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>-0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>-0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>-0.122998</td>
</tr>
</tbody>
</table>

- non-perturbative renormalisation à la Rome-Southampton
 → work in progress
Renormalisation

- consider parity conserving operator $V^\mu V_\mu + A^\mu A_\mu$
- static approximation leads to mixing

$$O^{\text{ren}}_{VV+AA} = Z_{VA} O_{VV+AA} + Z_{SP} O_{SS+PP}$$

- perturbative results for APE and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>Z_Φ</th>
<th>Z_{VA}</th>
<th>Z_{SP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>−0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>−0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>−0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>−0.122998</td>
</tr>
</tbody>
</table>

- non-perturbative renormalisation à la Rome-Southampton

→ work in progress
Renormalisation

- consider parity conserving operator $V^\mu V_\mu + A^\mu A_\mu$
- static approximation leads to mixing

$$O_{VV+AA}^{\text{ren}} = Z_{VA} O_{VV+AA} + Z_{SP} O_{SS+PP}$$

- perturbative results for APE and and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>Z_Φ</th>
<th>Z_{VA}</th>
<th>Z_{SP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>-0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>-0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>-0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>-0.122998</td>
</tr>
</tbody>
</table>

- non-perturbative renormalisation à la Rome-Southampton
 → work in progress
Renormalisation

- consider parity conserving operator \(V^\mu V_\mu + A^\mu A_\mu \)
- static approximation leads to mixing

\[
O^{\text{ren}}_{VV+AA} = Z_{VA} O_{VV+AA} + Z_{SP} O_{SS+PP}
\]

- perturbative results for APE and and HYP smearing

[Dumitrescu, Loktik, Izubuchi, 2006, talk by Thomas a few minutes ago]

<table>
<thead>
<tr>
<th></th>
<th>(Z_\Phi)</th>
<th>(Z_{VA})</th>
<th>(Z_{SP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE MF</td>
<td>0.956107</td>
<td>0.761166</td>
<td>-0.132280</td>
</tr>
<tr>
<td>APE MS</td>
<td>0.898187</td>
<td>0.678530</td>
<td>-0.122998</td>
</tr>
<tr>
<td>HYP MF</td>
<td>0.980320</td>
<td>0.811057</td>
<td>-0.132280</td>
</tr>
<tr>
<td>HYP MS</td>
<td>0.941173</td>
<td>0.753263</td>
<td>-0.122998</td>
</tr>
</tbody>
</table>

- non-perturbative renormalisation à la Rome-Southampton
 → work in progress
Outline

1. Motivation
2. The Static Approximation on the Lattice
3. Numerical Results
4. Summary
Gauge Field Ensembles

- $2 + 1$ flavour Domain Wall fermions, $16^3 \times 32 \times 16$ lattices
- Iwasaki gauge action, $\beta = 2.13$, $a^{-1} = 1.62(4)$ GeV

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>m_{valence}</th>
<th>#conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01/0.04</td>
<td>0.01/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.02/0.04</td>
<td>0.02/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.03/0.04</td>
<td>0.03/0.0359</td>
<td>300</td>
</tr>
</tbody>
</table>

- lightest pion mass 400 MeV, $(2 \text{ fm})^3$ volume

[RBC & UKQCD, Allton et al, 2007]

- all results are preliminary
Gauge Field Ensembles

- 2 + 1 flavour Domain Wall fermions, $16^3 \times 32 \times 16$ lattices
- Iwasaki gauge action, $\beta = 2.13$, $a^{-1} = 1.62(4)$ GeV

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>m_{valence}</th>
<th>#conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01/0.04</td>
<td>0.01/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.02/0.04</td>
<td>0.02/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.03/0.04</td>
<td>0.03/0.0359</td>
<td>300</td>
</tr>
</tbody>
</table>

- lightest pion mass 400 MeV, $(2 \text{ fm})^3$ volume

[RBC & UKQCD, Allton et al, 2007]

- all results are preliminary
Gauge Field Ensembles

- 2 + 1 flavour Domain Wall fermions, $16^3 \times 32 \times 16$ lattices
- Iwasaki gauge action, $\beta = 2.13$, $a^{-1} = 1.62(4)$ GeV

$$\begin{array}{c|c|c}
\text{m_{sea}} & \text{m_{valence}} & \#\text{conf} \\
0.01/0.04 & 0.01/0.0359 & 300 \\
0.02/0.04 & 0.02/0.0359 & 300 \\
0.03/0.04 & 0.03/0.0359 & 300 \\
\end{array}$$

- lightest pion mass 400 MeV, $(2 \text{ fm})^3$ volume

[RBC & UKQCD, Allton et al, 2007]

- all results are preliminary
2 + 1 flavour Domain Wall fermions, $16^3 \times 32 \times 16$ lattices

Iwasaki gauge action, $\beta = 2.13$, $a^{-1} = 1.62(4)$ GeV

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>m_{valence}</th>
<th>#conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01/0.04</td>
<td>0.01/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.02/0.04</td>
<td>0.02/0.0359</td>
<td>300</td>
</tr>
<tr>
<td>0.03/0.04</td>
<td>0.03/0.0359</td>
<td>300</td>
</tr>
</tbody>
</table>

lightest pion mass 400 MeV, (2 fm)3 volume

[RBC & UKQCD, Allton et al, 2007]

all results are preliminary
Decay Constants

- gauge fixed wall sources
- construct ratio $\Phi = \frac{C_{WL}(t)}{\sqrt{C_{WW}(t) e^{-m^* t L^3}}}$
- $f_B = \Phi / \sqrt{m_B}$
Decay Constants

- gauge fixed wall sources
- construct ratio $\Phi = \frac{C^{WL}(t)}{\sqrt{C^{WW}(t) e^{-m^* t L^3}}}$
- $f_B = \Phi / \sqrt{m_B}$
gauge fixed wall sources
construct ratio $\Phi = \frac{C_{WL}(t)}{\sqrt{C_{WW}(t) e^{-m^* t L^3}}}$

$f_B = \Phi / \sqrt{m_B}$
ratio constrained in $SU(3)$-limit: \(\frac{\Phi_s}{\Phi} \bigg|_{m=m_s} = 1 \)

- input: \(a m_s^{\text{bare}} = 0.0390(21) \)
- APE: \(f_{B_s}/f_B = 1.13(3)(^{+6}_{-0}) \)
- HYP: \(f_{B_s}/f_B = 1.09(3)(^{+6}_{-0}) \)
ratio constrained in $SU(3)$-limit: $\frac{\Phi_s}{\Phi} \bigg|_{m=m_s} = 1$

input: $am_s^{\text{bare}} = 0.0390(21)$

APE: $f_{B_s}/f_B = 1.13(3)(+6)$

HYP: $f_{B_s}/f_B = 1.09(3)(+6)$
ratio constrained in $SU(3)$-limit: $\frac{\Phi_s}{\Phi} \bigg|_{m=m_s} = 1$

- input: $am_s^{bare} = 0.0390(21)$
- APE: $f_{B_s}/f_B = 1.13(3)(^{+6}_{-0})$
- HYP: $f_{B_s}/f_B = 1.09(3)(^{+6}_{-0})$
- ratio constrained in $SU(3)$-limit: $\frac{\Phi_s}{\Phi} \bigg|_{m=m_s} = 1$

- input: $am_s^{\text{bare}} = 0.0390(21)$
- APE: $f_{Bs}/f_B = 1.13(3)(+6)$
- HYP: $f_{Bs}/f_B = 1.09(3)(+6)$
Heavy Meson ChPT predicts logarithms for f_B and B_B

$$f_B = f_B^0 \left[1 - \frac{3}{4}(1 + 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]$$

$$B_B = B_B^0 \left[1 + \frac{1}{2}(1 - 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]$$

[Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

\[
f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m_{\pi}^2}{(4\pi f)^2} \ln \frac{m_{\pi}^2}{\mu^2} + \ldots \right]
\]

\[
B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m_{\pi}^2}{(4\pi f)^2} \ln \frac{m_{\pi}^2}{\mu^2} + \ldots \right]
\]

[Sharpe & Zhang, 1995]

- g: B^*B_π coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

\[
 f_B = f_B^0 \left[1 - \frac{3}{4}(1 + 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]
\]

\[
 B_B = B_B^0 \left[1 + \frac{1}{2}(1 - 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]
\]

[Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

$$f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

$$B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

[Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
 - no logs (at this order) in f_{B_s} and B_{B_s}
 - we see no logs down to $m_\pi = 400$ MeV

- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
 - conclude a 6% downwards error for f_B, log in B_B is suppressed

interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Heavy Meson ChPT predicts logarithms for f_B and B_B

\[
f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]
\]

\[
B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right]
\]

[Sharpe & Zhang, 1995]

g: $B^* B_\pi$ coupling ≈ 0.6

no logs (at this order) in f_{B_s} and B_{B_s}

we see no logs down to $m_\pi = 400$ MeV

strategy: assume curvature starts at lightest mass and estimate error from matching the slope

conclude a 6% downwards error for f_B, log in B_B is suppressed

interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

$$f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

$$B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

[Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

$$f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

$$B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m^2_\pi}{(4\pi f)^2} \ln \frac{m^2_\pi}{\mu^2} + \ldots \right]$$

[Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

 \[f_B = f_B^0 \left[1 - \frac{3}{4} (1 + 3g^2) \frac{m_\pi^2}{\left(4\pi f\right)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right] \]

 \[B_B = B_B^0 \left[1 + \frac{1}{2} (1 - 3g^2) \frac{m_\pi^2}{\left(4\pi f\right)^2} \ln \frac{m_\pi^2}{\mu^2} + \ldots \right] \]

 [Sharpe & Zhang, 1995]

- g: $B^* B_\pi$ coupling ≈ 0.6
- no logs (at this order) in f_{B_s} and B_{B_s}
- we see no logs down to $m_\pi = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6\% downwards error for f_B, log in B_B is suppressed

Interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Chiral Perturbation Theory

- Heavy Meson ChPT predicts logarithms for f_B and B_B

\[
f_B = f_B^0 \left[1 - \frac{3}{4} \left(1 + 3g^2 \right) \frac{m_{\pi}^2}{(4\pi f)^2} \ln \frac{m_{\pi}^2}{\mu^2} + \ldots \right]
\]

\[
B_B = B_B^0 \left[1 + \frac{1}{2} \left(1 - 3g^2 \right) \frac{m_{\pi}^2}{(4\pi f)^2} \ln \frac{m_{\pi}^2}{\mu^2} + \ldots \right]
\]

[Sharpe & Zhang, 1995]

- g: $B^* B\pi$ coupling ≈ 0.6
- no logs (at this order) in f_B^s and B_B^s
- we see no logs down to $m_{\pi} = 400$ MeV
- strategy: assume curvature starts at lightest mass and estimate error from matching the slope
- conclude a 6% downwards error for f_B, log in B_B is suppressed
- interesting partially quenched ChPT calculation

[Detmold & Lin, 2006, Lin’s talk]
Decay Constants III

- individual decay constants differ between APE and HYP

APE:
\[f_{B_s} = 261(10) \text{ MeV} \]
\[f_B = 231(10)(^{+0}_{-14}) \text{ MeV} \]

HYP:
\[f_{B_s} = 307(14) \text{ MeV} \]
\[f_B = 270(33)(^{+0}_{-16}) \text{ MeV} \]

can differ because of $O(a^2)$ errors

- effect of perturbative renormalisation factors?
- need more statistics
individual decay constants differ between APE and HYP

APE:
- \(f_{B_s} = 261(10) \) MeV
- \(f_B = 231(10)(^{+0}_{-14}) \) MeV

HYP:
- \(f_{B_s} = 307(14) \) MeV
- \(f_B = 270(33)(^{+0}_{-16}) \) MeV

- can differ because of \(O(a^2) \) errors
- effect of perturbative renormalisation factors?
- need more statistics
individual decay constants differ between APE and HYP

APE:
- $f_{B_s} = 261(10) \text{ MeV}$
- $f_B = 231(10)(^{+0}_{-14}) \text{ MeV}$

HYP:
- $f_{B_s} = 307(14) \text{ MeV}$
- $f_B = 270(33)(^{+0}_{-16}) \text{ MeV}$

can differ because of $O(a^2)$ errors

effect of perturbative renormalisation factors?

need more statistics
individual decay constants differ between APE and HYP

APE:
\[f_{B_s} = 261(10) \text{ MeV} \]
\[f_B = 231(10)(^{+0}_{-14}) \text{ MeV} \]

HYP:
\[f_{B_s} = 307(14) \text{ MeV} \]
\[f_B = 270(33)(^{+0}_{-16}) \text{ MeV} \]

can differ because of \(O(a^2) \) errors

effect of perturbative renormalisation factors?

need more statistics
individual decay constants differ between APE and HYP

APE:
\[f_{B_s} = 261(10) \text{ MeV} \]
\[f_B = 231(10)(^{+0}_{-14}) \text{ MeV} \]

HYP:
\[f_{B_s} = 307(14) \text{ MeV} \]
\[f_B = 270(33)(^{+0}_{-16}) \text{ MeV} \]

can differ because of \(O(a^2) \) errors

effect of perturbative renormalisation factors?

need more statistics
individual decay constants differ between APE and HYP

APE:
\[
\begin{align*}
f_{B_s} &= 261(10) \text{ MeV} \\
f_B &= 231(10)(^{+0}_{-14}) \text{ MeV}
\end{align*}
\]

HYP:
\[
\begin{align*}
f_{B_s} &= 307(14) \text{ MeV} \\
f_B &= 270(33)(^{+0}_{-16}) \text{ MeV}
\end{align*}
\]

can differ because of $O(a^2)$ errors

effect of perturbative renormalisation factors?

need more statistics
two strategies:

HYP: compute B_B from ratio $\frac{\langle B^W | O_{LL} | \bar{B}^W \rangle}{C_{WL} C_{WL}^{\text{C}}}$ in analogy to B_K

APE: directly compute full matrix element $M = \frac{8}{3} m_B^2 f_B^2 B_B$ from ratio $\frac{\langle B^B | O_{LL} | B^B \rangle e^{m^*_B t_1/2}}{\sqrt{C^{BB}(t,t_1) C^{BB}(t,0)}}$ with box source of size 8^3
two strategies:

HYP: compute B_B from ratio $\frac{\langle B^w|O_{LL}|\bar{B}^w \rangle}{C^{WL}C^{WL}}$ in analogy to B_K

APE: directly compute full matrix element $M = \frac{8}{3} m_B^2 f_B^2 B_B$

from ratio $\frac{\langle B^B|O_{LL}|\bar{B}^B \rangle e^{m_B^* t_1/2}}{\sqrt{C^{BB}(t,t_1)C^{BB}(t,0)}}$ with box source of size 8^3
Bag Parameters

two strategies:

HYP: compute B_B from ratio $\frac{\langle B^W | O_{LL} | \bar{B}^W \rangle}{C^{WL}C^{WL}}$ in analogy to B_K

APE: directly compute full matrix element $M = \frac{8}{3} m_B^2 f_B^2 B_B$ from ratio $\frac{\langle B^B | O_{LL} | B^B \rangle e^{m_B^* t_1/2}}{\sqrt{C^{BB}(t,t_1)C^{BB}(t,0)}}$ with box source of size 8^3
two strategies:

HYP: compute B_B from ratio $\frac{\langle B^W | O_{LL} | \bar{B}^W \rangle}{C^{WL} C^{WL}}$ in analogy to B_K

APE: directly compute full matrix element $M = \frac{8}{3} m_B^2 f_B^2 B_B$
from ratio $\frac{\langle B^B | O_{LL} | \bar{B}^B \rangle}{\sqrt{C^{BB}(t,t_1) C^{BB}(t,0)}}$ with box source of size 8^3
two strategies:

HYP: compute B_B from ratio $\frac{\langle B^W | O_{LL} | \bar{B}^W \rangle}{C^{WL} C^{WL}}$ in analogy to B_K

APE: directly compute full matrix element $M = \frac{8}{3} m_B^2 f_B^2 B_B$

from ratio $\frac{\langle B^B | O_{LL} | \bar{B}^B \rangle e^{m_B^* t_1/2}}{\sqrt{C^{BB}(t,t_1) C^{BB}(t,0)}}$ with box source of size 8^3
Bag Parameters II

APE: \[f_{Bs} \sqrt{B_{Bs}} = 262(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 237(13) \text{ MeV} \]

HYP: \[B_{Bs} = 0.791(16) \]
\[B_B = 0.738(40) \]

\[f_{Bs} \sqrt{B_{Bs}} = 273(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 232(29) \text{ MeV} \]

\[\xi = \frac{f_{Bs} \sqrt{B_{Bs}}}{f_B \sqrt{B_B}} \]

\[\xi^{\text{APE}} = 1.11(7), \quad \xi^{\text{HYP}} = 1.13(7) \]

statistical errors only, careful systematic error analysis needed
Bag Parameters II

APE:
\[
\begin{align*}
 f_{B_S} \sqrt{B_{B_S}} &= 262(14) \text{ MeV} \\
 f_B \sqrt{B_B} &= 237(13) \text{ MeV}
\end{align*}
\]

HYP:
\[
\begin{align*}
 B_{B_S} &= 0.791(16) \\
 B_B &= 0.738(40)
\end{align*}
\]

\[
\begin{align*}
 f_{B_S} \sqrt{B_{B_S}} &= 273(14) \text{ MeV} \\
 f_B \sqrt{B_B} &= 232(29) \text{ MeV}
\end{align*}
\]

\[
\xi = \frac{f_{B_S} \sqrt{B_{B_S}}}{f_B \sqrt{B_B}}
\]

\[
\begin{align*}
 \xi^{\text{APE}} &= 1.11(7), \\
 \xi^{\text{HYP}} &= 1.13(7)
\end{align*}
\]

Statistical errors only, careful systematic error analysis needed.
Bag Parameters II

APE: \[f_{B_s} \sqrt{B_{B_s}} = 262(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 237(13) \text{ MeV} \]

HYP: \[B_{B_s} = 0.791(16) \]
\[B_B = 0.738(40) \]

\[f_{B_s} \sqrt{B_{B_s}} = 273(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 232(29) \text{ MeV} \]

\[\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_B \sqrt{B_B}} \]
\[\xi^{\text{APE}} = 1.11(7), \quad \xi^{\text{HYP}} = 1.13(7) \]

statistical errors only, careful systematic error analysis needed
Bag Parameters II

APE: \[f_{B_s} \sqrt{B_{B_s}} = 262(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 237(13) \text{ MeV} \]

HYP: \[B_{B_s} = 0.791(16) \]
\[B_B = 0.738(40) \]

\[f_{B_s} \sqrt{B_{B_s}} = 273(14) \text{ MeV} \]
\[f_B \sqrt{B_B} = 232(29) \text{ MeV} \]

\[\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_B \sqrt{B_B}} \]
\[\xi^{\text{APE}} = 1.11(7), \quad \xi^{\text{HYP}} = 1.13(7) \]

Statistical errors only, careful systematic error analysis needed.
Outline

1. Motivation
2. The Static Approximation on the Lattice
3. Numerical Results
4. Summary
static approximation well defined limit of QCD, used as a reference point
- numerical simulations of matrix elements of static-light mesons
- preliminary results for decay constants and bag parameters for B and B_s meson
- linear chiral extrapolation
static approximation well defined limit of QCD, used as a reference point

numerical simulations of matrix elements of static-light mesons

preliminary results for decay constants and bag parameters for \(B \) and \(B_s \) meson

linear chiral extrapolation
static approximation well defined limit of QCD, used as a reference point
numerical simulations of matrix elements of static-light mesons
preliminary results for decay constants and bag parameters for B and B_s meson
linear chiral extrapolation
static approximation well defined limit of QCD, used as a reference point
numerical simulations of matrix elements of static-light mesons
preliminary results for decay constants and bag parameters for B and B_s meson
linear chiral extrapolation
non-perturbative renormalisation

more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)

finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)

extent b-physics program:
- other 4-fermion operators (SUSY)
- semi-leptonic form factors
- B meson lifetimes
- λ_b baryons
To Do List

- non-perturbative renormalisation
- more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)
 - finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)
- extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
To Do List

- non-perturbative renormalisation
- more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)
- finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)
- extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
non-perturbative renormalisation
more and lighter data points, \(\rightarrow 24^3 \times 64 \times 16\) (now)
finer lattice spacing, \(\rightarrow 32^3 \times 64 \times 16\) (soon)
extent \(b\)-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - \(B\) meson lifetimes
 - \(\lambda_b\) baryons
To Do List

- non-perturbative renormalisation
- more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)
- finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)
- extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
non-perturbative renormalisation
more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)
finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)
extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
non-perturbative renormalisation
more and lighter data points, → $24^3 \times 64 \times 16$ (now)
finer lattice spacing, → $32^3 \times 64 \times 16$ (soon)
extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
To Do List

- non-perturbative renormalisation
- more and lighter data points, $\rightarrow 24^3 \times 64 \times 16$ (now)
- finer lattice spacing, $\rightarrow 32^3 \times 64 \times 16$ (soon)
- extent b-physics program:
 - other 4-fermion operators (SUSY)
 - semi-leptonic form factors
 - B meson lifetimes
 - λ_b baryons
RI-Mom: match amputated vertex function at off-shell momentum

- Fourier transform in time only for the static propagator
- Tiny cut-off dependence for $t_{\text{max}} > 20$
- Need for definition of mass renormalisation
- Next step: heavy-light currents
- Next-to-next step: four-fermion vertices
• RI-Mom: match amputated vertex function at off-shell momentum
• Fourier transform in time only for the static propagator
 • tiny cut-off dependence for $t_{\text{max}} > 20$
 • need for definition of mass renormalisation
• next step: heavy-light currents
• next-to-next step: four-fermion vertices
RI-Mom: match amputated vertex function at off-shell momentum
Fourier transform in time only for the static propagator
tiny cut-off dependence for $t_{max} > 20$
need for definition of mass renormalisation
next step: heavy-light currents
next-to-next step: four-fermion vertices
Plans for NPR

- RI-Mom: match amputated vertex function at off-shell momentum
- Fourier transform in time only for the static propagator
- tiny cut-off dependence for $t_{max} > 20$
- need for definition of mass renormalisation
- next step: heavy-light currents
- next-to-next step: four-fermion vertices

Jan Wennekers (Edinburgh)
RI-Mom: match amputated vertex function at off-shell momentum
Fourier transform in time only for the static propagator
tiny cut-off dependence for $t_{\text{max}} > 20$
need for definition of mass renormalisation
next step: heavy-light currents
next-to-next step: four-fermion vertices
RI-Mom: match amputated vertex function at off-shell momentum
Fourier transform in time only for the static propagator
tiny cut-off dependence for $t_{max} > 20$
need for definition of mass renormalisation
next step: heavy-light currents
next-to-next step: four-fermion vertices