Nucleon form factors with $N_f=2+1$ domain wall fermions

Takeshi YAMAZAKI

University of Connecticut

for RBC-UKQCD Collaborations

Lattice 2007 © University of Regensburg
July 30 - August 4, 2007
Outline

1. Introduction

2. Simulation parameters

3. Results
 - g_A/g_V
 - vector form factors
 - axial vector form factors

4. Summary

Related talk: S. Ohta, nucleon structure functions, 7/31(Tue) 17:50
1. Introduction

Motivation: understand nucleon physics from first principle

We calculate matrix elements related to nucleon iso-vector vector and axial vector form factors on $N_f = 2 + 1$ domain wall fermion (DWF) configuration.

Form factors (Nucleon elastic scattering)

- Vector form factors

\[
\langle N, p|V_\mu(x)|N, p' \rangle = \bar{u}_N(p) \left(F_1(q^2) \gamma_\mu + i\sigma_{\mu\nu}q_\nu \frac{F_2(q^2)}{2M_N} \right) u_N(p') e^{iqx}
\]

$F_1(q^2), F_2(q^2) \rightarrow \langle r^2_1 \rangle, \langle r^2_2 \rangle$ related to charge radii $\langle r^2_p \rangle, \langle r^2_n \rangle$

$F_2(0) = \mu_p - \mu_n - 1$

- Axial vector form factors

\[
\langle N, p|A_\mu(x)|N, p' \rangle = \bar{u}_N(p) \left(G_A(q^2) i\gamma_5\gamma_\mu + i\gamma_5q_\mu G_P(q^2) \right) u_N(p') e^{iqx}
\]

$G_A(q^2), G_P(q^2) \rightarrow g_A/g_V, \langle r^2_A \rangle, g_{\pi NN}, g_P$
2. Simulation parameters

- $N_f = 2 + 1$ Iwasaki gauge + Domain Wall fermion actions
- $\beta = 2.13 \ a^{-1} = 1.73 \ \text{GeV} \ M_5 = 1.8 \ m_{\text{res}} \approx 0.003$
- Lattice size $24^3 \times 64 \times 16 \ (La \approx 2.7 \ \text{fm})$
- $m_s = 0.04$ fixed (close to m_s^{phys})
- quark masses $m_f = m_{\text{sea}} = m_{\text{val}}$ and confs.

<table>
<thead>
<tr>
<th>m_f</th>
<th>m_π[MeV]</th>
<th># of confs.</th>
<th>N_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>330</td>
<td>360</td>
<td>4</td>
</tr>
<tr>
<td>0.01</td>
<td>420</td>
<td>180</td>
<td>4</td>
</tr>
<tr>
<td>0.02</td>
<td>560</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>0.03</td>
<td>670</td>
<td>106</td>
<td>4</td>
</tr>
</tbody>
</table>

- Gaussian smearing is employed.
- Matrix elements are evaluated by ratio of 3- and 2-point functions.
- We focus only on iso-vector quantities. (no disconnected diagram)
- Four different non-zero q^2 with $(pL/2\pi)^2 = 1, 2, 3, 4$
- All results are preliminary.
3. Results
3.1. $g_A/g_V = G_A(0)/F_1(0)$

Lightest result is smaller than other mass points. This might be caused by large finite volume effect, because similar tendency was seen in quenched calculation in 1.2fm volume.
3.1.1. g_A/g_V with DWF

\[N_f = 0 \text{ RBCK, } N_f = 2 \text{ RBC, } N_f = 2 + 1 \text{ RBC-UKQCD} \]

$N_f = 2(1.9\text{fm})$ has similar m_{π}^2 dependence as $N_f = 2 + 1(2.7\text{fm})$.

Strange behavior happens at heavier region in smaller volume.
3.1.2. g_A/g_V vs $m_\pi L$ with DWF

$N_f = 0$ RBCK, $N_f = 2$ RBC, $N_f = 2 + 1$ RBC-UKQCD

$N_f = 2 + 1 (2.7 \text{fm})$ drops at $m_\pi L \sim 4.5$ as well as $N_f = 2 (1.9 \text{fm})$.

$N_f = 0 (2.4 \text{fm})$ does not decrease as m_π decreases.

It might be insensitive finite volume effect due to lack of sea quarks.
3.1.2. g_A/g_V vs $m_\pi L$ with DWF

$N_f = 0$ RBCK, $N_f = 2$ RBC, $N_f = 2 + 1$ RBC-UKQCD
$N_f = 2 + 1(1.8\text{fm})$ might have similar trend as $N_f = 2(1.9\text{fm})$ and $N_f = 2 + 1(2.7\text{fm})$ except lightest m_π with larger error.

Further investigation of finite volume effect is necessary.

$m_\pi L \sim 4.5$ seems threshold.
3.1.3. g_A/g_V vs $m_\pi L$ with dynamical calculation

Results with Wilson fermion also have similar trend.

Estimation of threshold $m_\pi L \sim 4.5$ is not so bad.
3.1.4. Chiral extrapolation of g_A/g_V

![Graph showing g_A/g_V versus m_{π}^2 (GeV^2)]

Linear chiral extrapolation without lightest result

$$g_A/g_V = \begin{cases}
1.220(85) \text{ (lat.)} \\
1.270(3) \text{ (exp.)}
\end{cases}$$
3.2 Iso-vector vector form factors

\[F_1(q^2) \]

\[F_2(q^2) \]

Renormalized by \(Z_V = 1/F_1(0) \)

\(F_1(q^2) \) is almost independent of quark mass except lightest result.

\(F_2(q^2) \) has some quark mass dependence, but it is not monotonic.
3.2.1 Dipole fit of vector form factors

1 parameter fit M_1

$$F_1(q^2) = \frac{1}{(1 + q^2/M_1^2)^2}$$

$\sqrt{\langle r_1^2 \rangle} = \sqrt{12}/M_1$

2 parameters fit $F_2(0)$ and M_2

$$F_2(0) = \frac{\mu_p - \mu_n - 1}{(1 + q^2/M_2^2)^2}$$

$\sqrt{\langle r_2^2 \rangle} = \sqrt{12}/M_2$
3.2.2 Iso-vector Dirac rms radius $\sqrt{\langle r_1^2 \rangle}$

Result approaches to experiment as m_π decreases. However, lightest result might be affected by large finite volume effect. To check reliability of lightest result, we need more detailed finite volume study of this form factor.
3.2.3 $F_2(0)$ and Iso-vector Pauli rms radius $\sqrt{\langle r_2^2 \rangle}$

![Graph showing $F_2(0)$ and $(\langle r_2^2 \rangle)^{1/2}$ vs m_π^2.[Image]]

$F_2(0) = \mu_p - \mu_n - 1$

Finite volume might effect lightest results.

$F_2(0)$ is comparable to experiment.

$\sqrt{\langle r_2^2 \rangle}$ approaches to experiment from heavier m_π than $\sqrt{\langle r_1^2 \rangle}$.

We will improve statistics at $m_f = 0.01$ to confirm m_π dependence.
3.3. Iso-vector axial vector form factors

Both are renormalized by $Z_V = 1/F_1(0) \approx Z_A$.

$G_A(q^2)$ is almost independent of quark mass except lightest result. Lightest result of $G_A(q^2)$ is smaller than other results and would include large finite volume effect.

$G_P(q^2)$ at smallest q^2 increases as quark mass decreases except lightest result. This trend is consistent with pion pole dominance of G_P.
3.3.1. Dipole fit and Goldberger-Treiman relation

1 parameter fit \(M_A \)

\[
\frac{G_A(q^2)}{G_A(0)} = \frac{1}{(1 + q^2/M_A^2)^2}
\]

generalized G-T relation

\[
G_P(q^2) = \frac{2m_N G_A(q^2)}{q^2 + m_\pi^2}
\]

We evaluate axial charge rms radius \(\sqrt{\langle r_A^2 \rangle} = \sqrt{12}/M_A \).

Ratio based on G-T relation is almost insensitive to \(q^2 \). \(G_P \) would be explained by \(G_P(q^2) = \alpha_P \times 2m_N G_A(q^2)/(q^2 + m_\pi^2) \).
3.3.2 Iso-vector axial charge rms radius $\sqrt{\langle r_A^2 \rangle}$

Lightest result might have large finite volume effect, but there is tendency to approach experiment. We need to improve statistics at $m_f = 0.01$.

3.3.3 \(g_{\pi NN} \) coupling and \(g_P \) for muon capture

G-T relation \(g_{\pi NN} = m_N g_A / f_\pi \)

\[
m_N g_A / f_\pi = m_\mu G_P(0.88m_\mu^2)
\]

\(f_\pi \) is fixed by experiment.

\[
\text{GT(meas. } \alpha_P \text{)} : \alpha_P \times 2m_N G_A(0.88m_\mu^2)
\]

\[
G_P(q^2 + m_\pi^2) : \text{dipole fit of } G_P(q^2)(q^2 + m_\pi^2)
\]

Both lightest results are omitted in chiral extrapolation due to large finite volume effect.

Results obtained from extrapolation agree with experiment in both cases.
4. Summary

- We calculated nucleon matrix elements with $N_f = 2 + 1$ dynamical domain wall fermions at four quark masses.
- Lightest results would include large finite volume effect, e.g., g_A/g_V, $G_A(q^2)$, and $G_P(q^2)$. Threshold $m_\pi L \sim 4.5$ for g_A/g_V. We need more detailed finite volume study.
- While all results are preliminary, we found encouraging results.

Future work

- Improve statistics at $m_f = 0.01$
- Finite volume study with smaller volume result
Backup Slides
Finite volume study of $g_A/g_V = G_A(0)/F_V(0)$
Well determined in experiment: $g_A/g_V = 1.2695(29)$

g_A/g_V is simple, basic physical quantity in nucleon matrix element.

It is easy to calculate with DWF due to $Z_V/Z_A \approx 1$.

Large finite volume effect is seen in heavy m_π region.

g_A/g_V at 2.4 fm agrees well with one at 3.6 fm.

$L \approx 2.5$ fm seems to be enough in this quenched calculation.
Each component of g_A/g_V

g_V^{lat} has reasonable m_{π}^2 dependence, and seems to agree with Z_A^{-1} in chiral limit within 1%.

g_A^{lat} decreases at lightest pion mass.

Axial vector form factor has strange pion mass dependence.
\[g_A / g_V \]

N\(_f\) = 2+1 2.7 fm
N\(_f\) = 2 1.9 fm
N\(_f\) = 0 3.6 fm

experiment
N\(_f\) = 2+1 2.5 fm LHPC
N\(_f\) = 2+1 3.5 fm LHPC

\[m_\pi^2 [\text{GeV}^2] \]
\begin{align*}
\text{m} & \quad \pi \\
\text{L} \\
\text{0.8} & \quad \text{0.9} & \quad \text{1} & \quad \text{1.1} & \quad \text{1.2} & \quad \text{1.3} & \quad \text{1.4} & \quad \text{1.5} \\
N_f = 0 & \ (2.4 \text{fm}) \\
N_f = 2 & \ (1.9 \text{fm}) \\
N_f = 2+1 & \ (2.7 \text{fm}) \\
N_f = 2 & \ (1.4 \text{fm}) \text{ Wilson}^1 \\
N_f = 2 & \ (1.7 \text{fm}) \text{ Wilson}^2
\end{align*}

\begin{align*}
g_A / g_V
\end{align*}
Experiment

\(\frac{m_N g_A}{f_\pi} (\text{exp. } f_\pi) \)

\(\frac{m_N g_A}{f_\pi} (\text{meas. } f_\pi) \)

chiral limit

\(g_{\pi NN} \)
\[
\left(\langle r_A^2 \rangle \right)^{1/2} \text{[fm]}
\]

- G_A
- $G_P(m_\pi^2 + q^2)$

Experiment

\[m_\pi^2 \text{[GeV}^2]\]
Matrix elements

\[R_{\vec{p}}^{PO}(t, t_{snk}, t_{src}) = \frac{G_{\vec{p}}^{PO}(t)}{G_0^{G}(t_{snk})} \left[\frac{G_L^{G}(t_{snk} - t + t_{src})G_0^{G}(t)G_L^{L}(t_{snk})}{G_L^{G}(t_{snk} - t + t_{src})G_0^{L}(t)G_L^{L}(t_{snk})} \right]^{1/2} \]
\[\propto \langle N(0)|O(q)|N(p)\rangle \quad (t_{src} \ll t \ll t_{snk}) \]

Normalization of operator is canceled out.

\[G_{\vec{p}}^{PO} : \quad 3\text{-point function of } O \text{ with } \vec{p} \text{ and projector } P \]
\[\text{gauss smearing source and local sink are employed.} \]

\[G_{\vec{p}}^{G,L} : \quad 2\text{-point function with gauss smearing}(G) \text{ and local}(L) \text{ sink} \]