Seminarankündigung
(gem. mit Festkörpertheorie-Seminar)

Sprecher: **Prof. Ivo Souza**
Universidad del País Vasco
San Sebastián, Spain

Ort: PHY 5.0.21

Zeit: Donnerstag, 13. Juli 2017, 14.15 Uhr

Thema: Orbital magnetoelectric effects in metals in insulators

Abstract
In ferromagnets, the orbital magnetization is typically small compared to spin. I will discuss two phenomena where orbital magnetism dominates. One is an orbital magnetoelectric effect that becomes quantized in topological insulators, and is related to a surface anomalous Hall conductivity. It can be expressed in dimensionless units as an "axion angle", and as a bulk property it is only defined modulo 2pi. This indeterminacy, reminiscent of the Berry-phase theory of polarization, can be resolved by calculating the Chern numbers on the "hybrid Wannier sheets" near the surface [1]. The other is a current-induced magnetization in gyrotropic conductors (e.g., p-doped tellurium). In the absence of spin-orbit it becomes a purely orbital effect, which in Weyl semimetals is proportional to the energy separation between Weyl nodes of opposite chirality [2]. Finally, I will discuss the occurrence of nonlinear Weyl crossings with chiral charges C_{\pm} in the bands of nonmagnetic crystals with threefold or sixfold symmetry, such as trigonal tellurium and hexagonal NbSi2 [3].

Ansprechpartner: J. Fabian