Bildgebende Verfahren in der radiologischen Diagnostik II
(Magnetresonanztomographie)
(Physik in der Medizin)
SS 2018

PD Dr. rer. nat. Wolfgang R. Nitz, Dipl.-Ing., Dipl.-Phys.

1. Vorlesungsstunde – Einführung und Überblick

1.01 Zur Person des Dozenten

1.02 Zur Vorlesung

1.03 Literatur

1.04 Vorlesungsstunde #1 – Übersicht (Vorlesung und Modalitäten)

1.05 Vorlesungsstunde #2 – Historisches und Grundlagen der NMR

1.06 Vorlesungsstunde #3 – Historisches und Grundlagen der MRT

1.07 Vorlesungsstunde #4 – Die „MRT-Bildungssequenz“

1.08 Vorlesungsstunde #5 – Berechnung einer MRT-Bildungssequenz

1.09 Vorlesungsstunde #6 – Systemkomponenten eines MRT

1.10 Vorlesungsstunde #7 – Sicherheitsaspekte in der MRT

1.11 Vorlesungsstunde #8 – Sicherheit von Implantaten in der MRT

1.12 Vorlesungsstunde #9 – Patientenbelastung in der MRT

1.13 Vorlesungsstunde #10 – Bildkontrastberechnungen (SE)

1.14 Vorlesungsstunde #11 – Bildkontrastberechnungen (GRE, SSFP)

1.15 Vorlesungsstunde #12 – Grundlagen der MR Angiografie

1.16 Vorlesungsstunde #13 – DWI, DTI, PI

2. Vorlesungsstunde – Modalitäten und Indikationen

2.1 Modalitätsüberblick und Grundprinzipien

2.2 Indikationen – Welche Modalität für welche Erkrankung?

2.3 NMR Historie und Grundlagen

2.3.1 Postulierung und experimenteller Nachweis des Kernspins

2.4 Vom Kernspin zur Kernmagnetisierung

2.5 Die Magnetresonanz

2.6 Die phänomenologische Bloch Gleichung

2.7 Die Relaxationsprozesse

2.7.1 Die T2-Relaxation

2.7.2 Die T1-Relaxation

2.7.3 Die „BPP“-Theorie

3. Die Anwendung der NMR in der Medizin

3.1 Die Anwendung der NMR in der Medizin

3.2 Die Bestimmung der T1-Relaxationszeit

3.3 Die Entdeckung des Spin-Echos

3.4 Die magnetische Suszeptibilität – und T2*

3.5 Die Bestimmung der T2-Relaxationszeit

3.6 Die Einführung des Diffusionsterms

3.7 Die Carr-Purcell (CP) Pulse Sequence

3.8 Die Carr-Purcell-Meiboom-Gill (CPMG) Pulse Sequence

3.9 Die räumliche Kodierung
4. Vorlesungsstunde: Patientenbelastung in der MRT 29
 4.1 Die SAR-Belastung des Patienten ... 29
 4.2 Der SAR-Monitor .. 30
 4.3 Die PNS – die periphere Nervenstimulation 31
 4.4 Magnetfeld „Empfindungen“ ... 32

5. Vorlesungsstunde – Bildgebungsssequenz ... 33
 5.1 Gewebespezifische Parameter ... 33
 5.2 Die MR Bildgebung .. 34
 5.2.1 Die Magnetfeldgradientenspule .. 34
 5.2.2 Die schichtselektive Anregung .. 35
 5.2.3 Die Frequenzkodierung ... 36
 5.2.4 Die Phasenkodierung ... 38
 5.2.5 Die Bildgebungsssequenz ... 38
 5.2.6 Der k-Raum ... 39

6. Vorlesungsstunde – Berechnung einer Bildgebungsssequenz 43
 6.1 Die schichtselektive Anregung .. 43
 6.1.1 Amplituden für den Schichtselektionsgradienten 43
 6.1.2 Berechnung des HF Pulses ... 43
 6.1.3 Gradientenrampenzeiten .. 45
 6.1.4 Timing ... 45
 6.2 Die Frequenzkodierung ... 46
 6.2.1 Länge des Datenakquisitionsfensters .. 46
 6.2.2 Gradientenrampenzeiten ... 48
 6.2.3 Timing ... 48
 6.3 Die Phasenkodierung .. 48
 6.3.1 Das Amplitudenzeitintegral ... 48
 6.3.2 Gradientenrampenzeiten ... 49
 6.4 MPG – Das Medizinproduktegesetz .. 49
 6.5 SDE – Sequence Development Environment .. 49
 6.5.1 IDEA – Integrated Development Environment for Applications 49
 6.5.2 ICE – Image Calculation Environment .. 53

7. Die MR Sequenzfamilie (Übersicht) .. 55
 7.1 CSE – die konventionelle Spin-Echo-Sequenz .. 55
 7.2 GRE – die Gradienten-Echo-Sequenz .. 55
 7.3 TSE, FSE – die Multi-Echo Spin-Echo-Sequenzen 56
 7.4 SPACE, CUBE, VISTA ... 56
 7.5 FLAIR – die Fluid-Attenuated Inversion Recovery 57
 7.6 TIR – die phasensensitive IR-TSE ... 57
 7.7 STIR – die Fettunterdrückungstechnik .. 57
 7.8 RESTORE, DRIVE, FRFSE – die TSE mit Flip-Back-Puls 57
 7.9 MP-RAGE – T1-W 3D-GRE ... 58
 7.10 CISS – Constructive Interference Steady State 58
 7.11 HASTE – Half Fourier Acquired Single Shot TSE 58
 7.12 DW-SE-EPI – die diffusionsgewichtete EPI .. 58
 7.13 FLASH, FISP, DESS, CISS, trueFISP ... 59
 7.14 VIBE – die 3D GRE mit Volumeninterpolation 59
 7.15 GRE – In-Phase, Opposed-Phase Bildgebung 59
 7.16 TSE – in der abdominellen Bildgebung .. 59
 7.17 MRCP – Magnetresonanzcholangiopankreatographie 60
 7.18 trueFISP – die „wahre“ FISP .. 60
 7.19 TFL – die turboFLASH ... 60
 7.20 MEDIC – Multi-Echo Data Image Combination 60
 7.21 FISP – Fast Imaging with Steady-state Precession 61
 7.22 TGSE, GRASE – die Gradienten- und Spin-Echo Sequenz 61
 7.23 Herstellerspezifische Akronymen ... 61
8. Vorlesungstitel – Hardware

8.1 Magnet-Technologie

8.1.1 Magnetfeldstärke

8.2 Magnetfeldgradienten-Technologie

8.3 HF-Spulentechnologie

8.3.1 PAT – parallele Akquisitionstechniken

8.3.1.1 mSENSE – modified SENSitivity Encoding

8.3.1.2 GRAPPA – GeneRalized Autocalibrating Partially Parallel Acquisition

8.3.2 Die Kanalapokalypse

8.3.3 TX-Arrays

9. Vorlesungstitel: Sicherheitsrelevante Aspekte in der MRT

9.1 Statisches Magnetfeld B_0 – Anziehungskräfte

9.2 Statisches Magnetfeld B_0 – Torsionskräfte

9.3 Quench – Flüssigkeiten und Gase

9.4 Wechselwirkung von B_0 und VB mit Implantaten

9.5 Wechselwirkung mit HF

9.5.1 EKG-Elektroden

9.5.2 Hüftgelenkinsplantierte

9.5.3 Menschliche Stromschleifen

9.5.4 Tätowierungen und permanentes Makeup

9.6 Wechselwirkung von B_0 und HF mit Implantaten

9.6.1 Herzschrittmacher

9.6.2 Neurostimulatoren

9.6.3 Cochlear Implantate

9.6.4 Gefäßprothesen (Stents)

9.6.5 Mechanische Kontrazeptiva

9.6.6 Zahnpflege und Fixierplättchen

9.6.7 Körperschmuck

10. Vorlesungstitel: Patientengefährdung in der MRT

10.1 Die Geräuschblase – der Lärm – das Knattern

10.2 Die NSF – die Nephrogene Systemische Fibrose

11. Vorlesungstitel – Bildkontrastberechnungen (SE, IR)

11.1 „Elementare“ Bildgebungssequenzen

11.1.1 Spin-Echo- versus Gradienten-Echo-Sequenzen (SE, GRE)

11.1.2 Das Sequenzklassifizierungsschema

11.1.3 Die Multi-Echo-Spin-Echo-Sequenz

11.1.4 Die „schnelle“ Spin-Echo-Sequenz (TSE, FSE)

11.3 Bildkontraste der SE-Sequenz

11.3.1 Die PD-Wichtung

11.3.2 Die T_1-Wichtung

11.3.3 Die T_2-Wichtung

11.4 Die SE-Sequenz mit Vorbereitung der Magnetisierung

11.4.1 Die Fetsättigung

11.4.2 Die STIR

11.4.3 Die FLAIR

11.4.4 Signalverlaufsdiagramm der IR-Sequenz

11.5 Die TSE-Sequenz mit Vorbereitung der Magnetisierung

11.5.1 Die TIR

11.5.2 Die TIRM (turboFLAIR)

11.5.3 Die RESTORE, DRIVE, FR-FSE

11.5.4 Die SPACE, CUBE, VISTA
11. Vorlesungsstunde – Kontrastberechnungen (GRE, SSFP) 95
11.1 "FLASH – fast low angle shot" oder "spoiled GRE" 95
11.1.1 FLASH – Signalverhalten .. 96
11.1.2 Der "Ernst-Winkel" .. 97
11.1.3 Low-Angle T2-W Bildgebung .. 99
11.1.4 Von der 2D- zur 3D-Bildgebung .. 99
11.1.5 In-Phase und Opposed-Phase Bildgebung 99
11.2 "FSFP – fast imaging with steady precession" 100
11.3 "trueFISP – true fast imaging with steady precession" 102
11.3.1 PSIF – die rückwärts ablaufende FISP 102
11.3.2 CISS – constructive interference steady state 103
11.3.3 DESS – double echo steady state .. 103
11.4 GREs mit Vorbereitung der Magnetisierung 104
11.4.1 Die turbo-FLASH ... 104
11.4.2 Die MP-RAGE – magnetization prepared rapid acquired gradient echo 104
11.5 Multi-Echo-GREs ... 105
11.5.1 Die MEDIC – multi echo data image combination 105
11.6 Single-Shot-GREs ... 105
11.6.1 Die EPI – echo-planar-imaging .. 105
11.6.2 Die EPI – radial echo-planar-imaging 106
11.6.3 Die sEPI – spiral echo-planar-imaging 106
11.7 Single-Shot-GREs mit Vorbereitung der Magnetisierung 106
11.7.1 Die SE-EPI – spin-echo-echo-planar-imaging 106
12. Vorlesungsstunde – Grundlagen der MR Angiografie 107
12.1 GMR – Gradient Motion Rephasing in der ToF-MRA 107
12.2 MIP – Projektion der maximalen Intensität 110
12.3 MTS – Magnetization Transfer Saturation 111
12.4 TONE – Tilted Optimized Nonsaturating Excitation 111
12.5 ITN – Interpolation Through Nulling .. 111
12.6 PC-MRA – Phase Contrast MR Angiography 113
12.7 ceMRA .. 113
12.7.1 ceMRA – Grundprinzip .. 113
12.7.2 ceMRA – Artefakte .. 114
12.7.3 ceMRA – Risiken (NSF) ... 114
12.8 non-ceMRA .. 115
12.8.1 Rephased - Dephased .. 115
12.8.2 Pulmonalangiographie - Triggered but not Labeled 115
12.9.3 Aortendissektionen und Aortenisthmusstenosen 116
12.9.4 Nierenarterien – Triggered and Labeled 116
12.10 FQ – Fluxquantifizierung mit MR ... 117
12.11 Maxwell – Terme ... 117
12.12 Koronararterienbilddgebung – und T2prep 118
13. Vorlesungsstunde – DWI, DTI, PWI ... 120
13.1 DWI – die diffusionsgewichtete Bilddgebung 120
13.2 DTI – die Diffusions-Tensor-Bilddgebung 124
13.3 PWI – die perfusionsgewichtete Bilddgebung 129
13.4 SWI – die suszeptibilitätsgewichtete Bilddgebung 131
13.5 fMRI – die funktionelle MR Bilddgebung 132
13.5.1 BOLD – blood oxygenation level-dependent 132
13.5.2 HR – hemodynamic response function 133
13.5.3 DWI – in der fMRI ... 134
13.5.4 ASL – in der fMRI ... 134
13.5.5 T2, T2* – in der fMRI .. 135
13.5.6 Paradigmen – in der fMRI ... 135
13.5.7 Kartierung von Hirnfunktionen .. 136
© 2018 PD Dr. Wolfgang R. Nitz
14. Protokollparameter in der MRT ... 137

14.1 Protokollparameter – die nicht im relativen SNR dokumentiert sind 138

14.1.1 TR .. 138

14.1.2 TE .. 139

14.1.3 Distanzfaktor ... 140

14.1.4 Interpolation ... 140

14.2 Protokollparameter – die im relativen SNR dokumentiert sind 140

14.2.1 n_{eq} – Anzahl der Mittelungen .. 141

14.2.2 d - Schichtdicke ... 141

14.2.3 FoV – das asymmetrische FoV .. 142

14.2.4 Mat_{sym} – die Matrixgröße .. 142

14.2.5 GP_{PF} – „Partial-Fourier“ ... 143

14.2.6 GP_{ov} – das „Oversampling“ .. 143

14.2.7 ETL – Echozuglänge .. 144

14.2.8 SNR – Signal-zu-Rausch-Verhältnis (Zusammenfassung) 145

17. Stand der Technik .. 147

17.4 Anwendungsfelder – Applikationen .. 147

17.4.1 Bewegungskorrektur ... 147

17.4.2 Parametrische Bildgebung ... 148

17.4.3 Maphl – Die farbliche Überlagerung gewebespezifischer Information 148

17.4.4 REVEAL – Diffusionsgewichtete abdominelle Bildgebung 148

17.4.5 ASL – Perfusionsmessung ohne Kontrastmittel 149

17.4.6 TWIST & TRICKS – zeitaufgelöste ceMRA 149

17.4.7 MDS – Move During Scan .. 149

17.5 Hybrid-Technologien ... 150

17.5.1 MR-PET .. 150

17.5.2 IGT – Image Guided Therapy .. 152

17.6 Arbeitsflußoptimierung ... 152

Anhang .. 153

2.2 Vom Atom zum Kernspin ... 153

2.2.1 Demokrit „Das Atom“ ... 153

2.2.2 Rutherford’sches Streuexperiment .. 153

2.2.3 Bohr-Sommerfeld’sche Atombahn .. 154

2.2.4 Stern-Gerlach – Experiment: Beweis der Richtungsquantelung 155

Referenzen .. 156
1. Vorlesungsstunde – Einführung und Überblick

1.01 Zur Person des Dozenten

1.02 Zur Vorlesung

Diese Vorlesung ist an Physiker gerichtet, die eine Faszination für die medizinisch-physikalische Multidisziplinarität empfinden, oder einfach nur ein Interesse an der kernspintomographischen radiologischen Diagnostik haben – aus Physikerperspektive.

Zielsetzung der Vorlesung ist es, ein breites, primär anwendungsorientiertes Wissen zu vermitteln, welches als Kommunikationsbrücke zwischen Physik und Medizin dienen kann.

Im Masterstudium wird es in der Vertiefungsphase als Ergänzungsfach (M-VE 2) mit 16 Leistungspunkten honoriert.

1.03 Literatur

zu theoretisch und zu tieforschend:
- A. Abragam - Principles of Nuclear Magnetism
- Charles P. Slichter - Principles of Magnetic Resonance
- Ernst, G. Bodenhausen and A. Wokau - Principles of Nuclear Magnetic Resonance in one and two dimensions
zu speziell:
- Bernstein, M.; King, KF; Zhou, XJ - Handbook of MRI Pulse Sequences
- E. Mark Haacke, Robert W. Brown, Michael R. Thompson, Ramesh Venkatesan - Magnetic Resonance Imaging: Physical Principles and Sequence Design
zu technisch mit geringem Anwendungsbezug – und auch noch auf Englisch:
- Oppelt, A - Imaging Systems for Medical Diagnostics
empfehlenswert, wenngleich mit dürftigem Anwendungsbezug (und fehlendem MR Schwerpunkt) – und hoffnungslos überaltert:
- Klaus Ewen - Moderne Bildgebung: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung.

1.04 Vorlesungsstunde #1 – Übersicht (Vorlesung und Modalitäten)

Das Portfolio der Siemens Healthcare GmbH umfasst nicht nur die reinen bildgebenden Modalitäten, sondern seit einigen Jahren auch die Labordiagnostik, die Informationstechnologie – zur Vernetzung der bildgebenden Modalitäten, zur Verwaltung der Radiologieabteilung und Einbindung in das Krankenhausinformationssystem, und natürlich alle Leistungen, die mit der Organisation der Gerätebeschaffung und Gerätewartung in Verbindung stehen.
1.05 Vorlesungsstunde #2 – Historisches und Grundlagen der NMR

In dieser Vorlesung wird, basierend auf dem, was man im Physikstudium gelernt haben sollte, die systematische Entwicklung von der Idee des Atoms bis hin zur Postulierung und dem Beweis der Existenz des Kernspins, vorgestellt werden.

1.06 Vorlesungsstunde #3 – Historisches und Grundlagen der MRT

Es wird allgemein Paul Lauterbur zugeschrieben, dass er die Entwicklung der MRT mit seiner Veröffentlichung im Jahr 1973 angestoßen hat. Mit Hilfe des CT-Rekonstruktionsalgorithmus konnte er über die Magnetfeldstärkeabhängigkeit der Frequenz, die Position und den Inhalt zweier mit Wasser gefüllten Glasröhrchen zur Darstellung bringen.

Der Durchbruch zur Bildgebung kam primär 1976, durch die Ankündigung von EMI, einen Radiowlenscanner auf den Markt zu bringen.

1.07 Vorlesungsstunde #4 – Die „MRT-Bildgebungssequenz“

Die Abfolge von Anregung, Signalkodierung und Datenakquisition nennt man eine „Sequenz“. Die Rohdatenmatrix, in der die gemessenen Daten eingesortiert werden, nennt man k-Raum. Die übliche k-Raum-Trajektorie ist zeilenweise, wenngleich mittlerweile auch alternative k-Raum-Trajektorien durchaus gängig sind.

1.08 Vorlesungsstunde #5 – Berechnung einer MRT-Bildgebungssequenz

1.09 Vorlesungsstunde #6 – Systemkomponenten eines MRT

Die Entwicklung kurzer Magnete und die Einführung größerer Patientenöffnungen hat ganz neue Märkte eröffnet.

Wie aus der nebenstehenden Abbildung zu erkennen, haben sich mit der Eröffnung neuer Märkte neue Herausforderungen ergeben.

Schließlich steigt die SAR Belastung des Patienten mit der fünften Potenz des Patientenumfangs.

1.10 Vorlesungsstunde #7 – Sicherheitsaspekte in der MRT

1.11 Vorlesungsstunde #8 – Sicherheit von Implantaten in der MRT

Mit einer Bevölkerung, die sich zunehmend mit Implantaten ein Überleben sichert oder eine Verbesserung der Lebensqualität erreicht, gewinnt zunehmen die MR Kompatibilität an Bedeutung, bzw. werden auch von den MRT-Herstellern entsprechende Maßnahmen erwartet, damit auch bei solchen Patienten im Bedarfsfall eine Untersuchung durchgeführt werden kann.

1.12 Vorlesungsstunde #9 – Patientenbelastung in der MRT

1.13 Vorlesungsstunde #10 – Bildkontrastberechnungen (SE)

Auf der einen Seite haben wir die gewebespezifischen MRT-Parameter, die letztlich im Bild zur Darstellung gebracht werden sollen, als Möglichkeit, normale Anatomie von pathologischen Veränderungen zu unterscheiden.

Auf der anderen Seite haben wir sequenzspezifische Parameter, die eine entsprechende „Wichtung“ des Bildkontrastes erlauben.

1.14 Vorlesungsstunde #11 – Bildkontrastberechnungen (GRE, SSFP)

Neben der „klassischen“ Spin-Echo Sequenz gibt es noch eine ganze Reihe von Bildgebungsvarianten, die jede ihre eigene Existenzberechtigung bei verschiedensten Fragestellungen haben. Das einfachste Beispiel verwendet einen Verzicht auf den HF-Refokussierungspuls und eine so genannte „Kleinwinkelanregung“. Das charakterisiert die Familie der so genannten „Gradientenechos“.

1.15 Vorlesungsstunde #12 – Grundlagen der MR Angiografie

Die Flußempfindlichkeit der NMR war schon vor der Einführung der Bildgebung bekannt. Eine Ausnutzung der beobachteten Phänomene fand schon in den ersten Jahren nach Einführung der Bildgebung statt und führte zum Feld der MR-Angiografie

Die siebte Vorlesungsstunde ist der MR Angiografie gewidmet. Hier gibt es die Unterscheidungen:

- ToF-MRA, die „Flugzeitangiografie“
- PC-MRA, die „Phasenkontrastangiografie“
- ceMRA, die kontrastmittelgestützte MR Angiografie
- non-ceMRA, „neuere“ Techniken, die auch ohne Kontrastmittel auskommen.

1.16 Vorlesungsstunde #13 – DWI, DTI, PI

Auch die Empfindlichkeit des NMR-Signals auf eine gewebespezifische Diffusion, war schon lange vor der Bildgebung bekannt.

© 2018 PD Dr. Wolfgang R. Nitz
2. Vorlesungsstunde – Modalitäten und Indikationen

2.1 Modalitätsüberblick und Grundprinzipien

Der zahlenmäßig größte Markt dürfte wohl bei den Ultraschallgeräten existieren, gefolgt von den konventionellen Durchleuchtungsgeräten, den Angiographie-Anlagen und dann erst kommt die Computertomographie, gefolgt von der Kernspintomographie, auch Magnetresonanztomographie genannt, und als teuerste Modalität das SPECT und PET. Letzteres soll in dieser Vorlesung gar nicht behandelt werden, weil SPECT und PET nicht in einer radiologischen Abteilung angesiedelt sind, sondern in der Nuklearmedizin.

Auch in der konventionellen Röntgendiagnostik hat es in den letzten Jahren, mit Einführung der Flachbildendetoren, eine technologische Revolution gegeben.

Vorbei sind die Zeiten der Dunkelkammer und der Silbernitratlösungen. Die Bilder gehen vom Röntgengerät direkt in das PACS (picture archiving and communication system).

Für die Röntgentechnologie selber hat sich das Prinzip seit 1895 nicht verändert: Man beschleunige Elektronen, die auftreffend auf eine Anode, Röntgenstrahlen erzeugen, und messe, wieviel Röntgenstrahlung es durch den Patienten schafft. Die Röntgenstrahlenabsorption ist proportional zur Elektronendichte, und im niederenergetischen Bereich auch noch abhängig von der Ordnungszahl des absorbierenden Materials.

Im Zusammenhang mit jodhaltigen Kontrastmitteln lassen sich sowohl diagnostische als auch therapeutische Gefäßaufnahmen machen.

Auch die Computertomographie lebt von der Absorption von Röntgenstrahlen innerhalb des Patienten. Im Spannungsbereich ist man allerdings limitiert, da große Absorptionen im niedenergetischen Bereich, zu Bildartefakten führen würde.

Die zeitliche Limitierung der CT besteht primär in der Bewegung mechanischer Teile, Röntgenröhre und Detektorkranz müssen um den Patienten bewegt werden. CTs der vierten Generation hatten
einen feststehenden Detektorkranz – und mit der EBT (electron beam tomography) hat man sogar auf die Röntgenröhre verzichten können, letztlich hat sich aber doch die dritte Generation der CT durchgesetzt: Röhre und Detektor rotieren gemeinsam um den Patienten.

Auch das Prinzip der gefilterten Rückprojektion hat sich seit 1972 nicht verändert: Das System nimmt eine gleichmäßige Schwächung auf der Strecke durch das definierte Meßfeld an, und mit der Normierung ist die Schwächungsvariation innerhalb der Schicht identifiziert.

Da dieser Algorithmus zu einer verschmierten Darstellung führt, müssen die Projektionen entsprechend gefiltert werden, und aus diesem Grunde spricht man von einer gefilterten oder gefalteten Rückprojektion.

Bei kontinuierlicher Tischbewegung und parallel angeordneten mehrzeiligen Detektorinheiten, lassen sich isotrope Auflösungen erzielen, die retrospektive eine multiplanare Bildgebungsmöglichkeit erlauben.

In der nuklearmedizinischen Diagnostik werden Radiopharmaka in den Körper injiziert. Angepasst an biochemische Prozesse lassen sich gezielt bestimmte Organe oder bestimmte Stoffwechselprozesse zur Darstellung bringen.

In der Szintigraphie wird, ähnlich der konventionellen Röntgenaufnahme, eine Projektion der Strahlungsverteilung gemessen.

Bei der SPECT, der Single Photon Emission Computed Tomography, wird durch eine inverse Radontransformation eine Darstellung der zweidimensionalen Verteilung des Radiopharmakas möglich.

Bei der PET, der Positron Emission Computed Tomography, verwendet man zum Nachweis der Aktivität die Vernichtungsstrahlung der Kombination eines Positrons mit einem Elektron.

Zwecks anatomischer Zuordnung und Korrektur der Schwächung verwendet man heutzutage SPECT und PET in der Regel kombiniert mit einem CT-System (SPECT-CT, PET-CT).
Der Ultraschall erscheint vom Anschaffungspreis als die kostengünstigste Modalität, allerdings sitzt in der Regel der Arzt selber am Gerät, und nicht, wie bei allen anderen vorherig erwähnten Modalitäten, die medizinisch technische Assistentin – MTA (oder mit Röntgenschein die MTRA).

Die Kernspintomographie, auch Magnetresonanztomographie genannt, verwendet starke magnetische Felder, z.B. 1,5 T, um das Phänomen des Kernspins auszunutzen.

Das Phänomen des Kernspins bzw. der Magnetresonanz wird provoziert durch Einstrahlung einer elektromagnetischen Strahlung im MHz-Bereich (42,58 Hz/T).

Durch die elektromagnetische Strahlung im Resonanzbereich wird der Kernspin „angeregt“, um unmittelbar nach der Anregung seinerseits ein (schwaches) elektromagnetisches Signal zu emittieren.

2.2 Indikationen – Welche Modalität für welche Erkrankung?

Es stellt sich natürlich berechtigterweise die Frage: Brauchen wir wirklich alle diese Modalitäten – oder geht es nicht günstiger und einfacher.

In der Tat kann der Kostenfaktor nicht ganz unberücksichtigt bleiben. Das Gesundheitssystem muss bezahlbar bleiben.

Typische Indikation für ein konventionelles Röntgen ist immer die Situation, wo eine Projektion der Schwächung hinreichende Information zur Diagnose liefert. Z.B.:

- Lungenentzündung
- Knochenbrüche
- Knöcherne Veränderungen

Typische Indikation für eine DAS (Digitale Subtraktionsangiographie) ist immer dann gegeben, wenn man mit hoher Wahrscheinlichkeit auch gleich therapeutisch vorgehen wird, z.B. bei einer P(A)VK (periphere arterielle Verschlusskrankheit).

Typische Indikationen für ein CT … immer dann, wenn man die räumliche Verteilung der Schwächung zur Diagnose braucht, z.B.

- pulmonale Embolie
- SHT – Schädel-Hirn-Trauma

Typische Indikationen für ein nuklearmedizinische Verfahren … immer dann, wenn man Aussagen zum Metabolismus für die Diagnose braucht

- Herzmuskelaktivität
- Metastasen
Typische Indikationen für eine Sonographie
... immer dann, wenn akustische Reflexion an Grenzflächen eine ausreichende diagnostische Information liefert. Z.B.:
- Pränataldiagnostik
- Gelenkstrukturen
- Fluß in oberflächennahen Gefäßen

Typische Indikationen für eine MRT
... immer dann, wenn auf Weichteilkontrast angewiesen ist
- nichtinvasive Gefäßdiagnostik
- MS – Multiple Sklerose
- entzündliche Prozesse

Für die katalogisierten Krankheitsbilder gibt es Indikationsempfehlungen nach denen eine Modalität zu wählen ist, wobei dabei auch Modalitätsverfügbarkeit und Diagnosekosten berücksichtigt sind.

So gibt es für die MRT Alleinstellungsmerkmale, d.h. bei bestimmten Erkrankung ist die MRT ohne Alternative die einzige in Frage kommende Modalität. Das ist z.B. der Fall bei entzündlichen Prozessen im Gehirn, bei Entmarkungs- und bei degenerativen Erkrankungen.

Schwerpunkt der MRT in der radiologischen Diagnostik liegt seit Anbeginn der Einführung auf dem Zentralnervensystem.

2.3 NMR Historie und Grundlagen

Der Spin lässt sich als einen Drehimpuls verknüpft mit einem magnetischen Moment beschreiben. Das magnetische Moment des Protons kann, bei einer vorgegebenen Spinquantenzahl $\frac{1}{2}$, in einem Magnetfeld entweder eine parallele Ausrichtung zum Magnetfeld B_0 annehmen, oder eine antiparallele. Die beiden Zustände unterscheiden sich über eine Energiedifferenz, wobei die parallele Ausrichtung den energetisch günstigeren Zustand darstellt. Durch Zuführung von Energie über eine elektromagnetische Welle können parallel ausgerichtete Kernspins temporär in eine antiparallele Ausrichtung gebracht werden, wobei bei der Rückkehr in den Grundzustand die Energie wieder in Form einer elektromagnetischen Welle frei wird. Diese bezeichnet man auch als Kernspinsignal. Da die eingestrahlte elektromagnetische Welle die gleiche Wellenlänge haben muß, als die entsprechende Energiedifferenz vorgibt

$$\Delta E = \gamma \cdot \eta \cdot B_0,$$

spricht man auch von „Magnetresonanz“.

Der amerikanische Chemiker Paul Lauterbur von der State University in New York hatte 1971 die Idee, dem statischen Magnetfeld einen Magnetfeldgradienten zu überlagern, um dem Signal eine Rauminformation zuzuweisen [10]. Die oben schon erwähnte Resonanzfrequenz ist eine Funktion der Magnetfeldstärke. Überlagert man dem statischen Magnetfeld einen Magnetfeldgradienten, so wird die Magnetfeldstärke und damit auch die Resonanzfrequenz zu einer Funktion des Ortes. Über eine Fourieranalyse des Kernspinsignals lassen sich die Frequenzkomponenten extrahieren und die jeweiligen Amplituden können Bildpunkthelligkeiten zugeordnet werden, entsprechend der örtlich vorliegenden Signalstärken. Paul Lauterbur demonstrierte das Verfahren durch die Abbildung zweier mit Wasser gefüllter Reagenzgläser mit magnetischer Kernresonanz (NMR, nuclear magnetic resonance), in dem er dem homogenen Grundfeld magnetische Feldgradienten überlagerte und als Messsignal eine Projektion des Untersuchungsobjektes erhielt. Durch Wiederholung des Experiments mit sukzessiv gedrehten Feldgradienten,
konnte er mit den Rekonstruktionsalgorithmen der kurz zuvor erfundenen Röntgen-Computertomographie ein Bild des untersuchten Gegenstandes erstellen. Im April 1974 gab Lauterbur eine Präsentation in Raleigh, North Carolina, die auch von Richard Ernst aus Zürich besucht wurde. Ernst erkannte das Potential, die bis dahin verwendete Rückprojektion durch eine Kombination von Phasen- und Frequenzkodierung zu ersetzen [11], wie sie zum grossen Teil auch heute noch in der MRT verwendet wird.

2.3.1 Postulierung und experimenteller Nachweis des Kernspins

Die für die NMR ausschlaggebenden Entdeckungen werden Felix Bloch und Edward M. Purcell zugeschrieben, die 1946 den Kernspin bzw. die Magnetresonanz experimentell nachgewiesen [5], und dafür im Jahre 1952 den Nobelpreis erhalten haben.

2.4 Vom Kernspin zur Kernmagnetisierung

Diese Energieniveaus wiederum erlauben die Berechnung einer Besetzungswahrscheinlichkeit, bei der herauskommt, dass sich mehr Spins parallel ausrichten werden, als antiparallel – und es dadurch zur Ausbildung einer Kernmagnetisierung kommt.

Diese Ausbildung der Kernmagnetisierung bietet uns einen Ausweg aus der Quantenmechanik und erlaubt uns eine Berechnung der Bewegungsgleichung für den Spin nach klassischen Gesichtspunkten:

\[
\frac{d\mathbf{\hat{M}}}{dt} = \mathbf{\hat{H}} - \gamma \mathbf{\hat{h}} \times \mathbf{\hat{M}}
\]

Drehimpuls des Spin-Systems: \(\mathbf{\hat{M}} = \gamma \cdot h \mathbf{I}\)

Magnetisches Moment des Spin-Systems: \(\mathbf{\hat{M}} = \gamma \cdot h \mathbf{I}\)

Externer Stoff: \(\mathbf{\hat{H}}\)

Fermi-Dirac-Statistik

Zur Verwendung einer quasistatischen Annahme der Fermi-Dirac-Statistik gilt für Teilchen mit künstlicher Spin:

\[
B_g = \frac{kT}{\pi \gamma h^2 V}
\]

\[
\langle B_g \rangle = \frac{1}{\pi \gamma h^2 V}
\]

Die Fermi-Dirac-Statistik gilt für Teilchen mit künstlicher Spin. Die Fermi-Dirac-Statistik ist eine Annahme der Fermi-Dirac-Statistik.

\[
\chi = \frac{1}{\pi \gamma h^2 V}
\]

\[
\mathbf{\hat{H}} = \gamma \mathbf{\hat{h}} \times \mathbf{\hat{M}}
\]

\[
\mathbf{\hat{H}} = \gamma \mathbf{\hat{h}} \times \mathbf{\hat{M}}
\]

\[
\mathbf{H} = \gamma \mathbf{\hat{h}} \times \mathbf{\hat{M}}
\]

\[
\mathbf{H} = \gamma \mathbf{\hat{h}} \times \mathbf{\hat{M}}
\]
Über die Vertauschungsregeln der Drehimpulsoperatoren, lässt sich eine Bewegungsgleichung herleiten, die der klassischen Betrachtungsweise ähnelt. Die Anregung und die damit verbundene Larmor-Frequenz lässt sich auf diesem Wege noch herleiten.

Bei der späteren Berechnung von Anregungs- und Refokussierungswinkeln mit Hilfe einer Hochfrequenzinstrahlung, wird dieser Ansatz sehr schnell unübersichtlich und unanschaulich.

2.5 Die Magnetresonanz

Ansonsten gilt die klassische Analogie, die klassische Behandlung einer Kernmagnetisierung, die, mit einem Drehimpuls verknüpft, nach klassischen Gesichtspunkten betrachtet und berechnet werden kann.

Ist quantenmechanisch die Energiedifferenz durch eine elektromagnetische Strahlung mit entsprechendem Energieinhalt überbrückbar, so gibt die klassische Perspektive eine präzedierende Kernmagnetisierung vor, die mit der gleichen Frequenz präzediert, der so genannten Larmor-Frequenz.

Durch Mitführung eines B_1-Vektors (magnetische Komponente der verwendeten elektromagnetischen Strahlung) mit der gleichen Frequenz, lässt sich diese Kernmagnetisierung beliebig drehen.

Durch Einspeisung einer hochfrequenten Strahlung in ein orthogonal zueinander angeordnetes Antennensystem, lässt sich die Rotation des B_1-Vektors in der Transversalebene veranschaulichen.

Für die Berechnung der Einstrahldauer für eine bestimmte Drehung um diesen B_1-Vektor, gelten die gleichen Regeln für die Präzessionsfrequenz, wie bei der Präzession um die Richtung des statischen Magnetfeldes B_0.
Durch Einstrahlung einer im Resonanzbereich liegenden Hochfrequenz, lässt sich die initial longitudinal ausgerichtete Kernmagnetisierung um jeden beliebigen Winkel drehen.

Sobald die Longitudinalausrichtung verlassen wird, setzt, aus Gründen der Drehimpulserhaltung, eine Präzessionsbewegung ein.

Wird aus der longitudinalen Kernmagnetisierung eine transversale Kernmagnetisierung, so spricht man von einer 90° Anregung.

Auch nach Abschaltung des Anregungspulses rotiert die transversale Magnetisierung weiter, und induziert entsprechend ihres magnetischen Moments eine Spannung in ein um das Objekt angebrachtes Antennensystem.

2.6 Die phänomenologische Bloch Gleichung

Schon 1955 wurden NMR-Studien an lebenden Zellen und Tiergewebe durchgeführt, einschließlich der Messung gewebespezifischer Relaxationszeiten [7]. Raymond Damadian vom Downstate Medical Center in Brooklyn und Donald P. Hollis von der Johns Hopkins Universität in Baltimore untersuchten die T_1- und T_2-Relaxationszeiten von normalem und Krebsgewebe und kamen zu der Erkenntnis, dass Krebsgewebe längere Relaxationszeiten aufwies [8]. Damadian glaubte, die ultimative Technologie für die Krebsdiagnostik gefunden zu haben [9]. Leider gab Damadian keinen brauchbaren Hinweis, wie man den menschlichen Körper nach Krebs durchsuchen könnte.
2.7 Die Relaxationsprozesse

Als T_1-Relaxation wird der Prozess der Erholung bezeichnet, als T_2-Relaxation der Prozess der Dephasierung.

Über die intramolekulare Dipol-Dipol-Wechselwirkung ist der Prozess der Dephasierung am einfachsten zu erläutern.

Je nach Orientierung des Moleküls relativ zum Magnetfeld erfolgt eine verstärkende oder abgeschwächende Überlagerung durch das benachbarte magnetische Moment.

2.7.1 Die T_2-Relaxation

Ähnlich der Argumentation, wie man sie bei der Anregung verwendet hat, gilt allerdings auch für diesen Erholprozess, dass B-Fluktuationen in Resonanznähe erforderlich sind, damit eine Rückkehr erlaubt ist. Auch bei der T_1-Relaxation spielt die molekulare Beweglichkeit eine Rolle.
Im Kopf findet man drei klassische Vertreter für unterschiedliche T_1-Relaxationszeiten:

Man spricht von einer Wichtung, wenn ein bestimmter gewebespezifischer Parameter den Bildkontrast dominiert.

Da der Wechselwirkungsprozess von den B_1-Fluktuationen in Resonanznähe abhängt und sich die Resonanzfrequenz mit der verwendeten Magnetfeldstärke verändert, beobachtet man eine gewebespezifische aber feldstärkenabhängige T_1-Relaxationszeit.

2.7.3 Die „BPP“-Theorie

Die anschaulichen Wechselwirkungsprozesse, seien sie intramolekular oder intermolekular, für die Erklärung der T_1- und T_2-Relaxationszeiten, finden ihr quantitatives Gegenstück in der sogenannten „BPP“-Theorie.

In biologischem Gewebe ist es natürlich eine Herausforderung, ein Modell zu entwerfen, das allen Relaxationsprozessen gerecht wird.

Für die klinische Routinebildgebung ist aber die Kenntnis der Abläufe bei den Relaxationsprozessen von eher untergeordneter Bedeutung.

Hier gilt generell: Flüssigkeiten sind in der T_1-gewichteten Bilddgebung dunkel, und in der T_2-gewichteten Bilddgebung hell. Da Pathologien oft mit Wassereinlagerungen verbunden sind, erhält man ein entsprechendes Kontrastverhalten.
3. Vorlesungsstunde: Von der NMR zur MRT

3.1 Die Anwendung der NMR in der Medizin

Schon 1955 wurden NMR-Studien an lebenden Zellen und Tiergewebe durchgeführt, einschließlich der Messung gewebespezifischer Relaxationszeiten [7]. Raymond Damadian vom Downstate Medical Center in Brooklyn und Donald P. Hollis von der Johns Hopkins Universität in Baltimore untersuchten die T1- und T2-Relaxationszeiten von normalem und Krebsgewebe und kamen zu der Erkenntnis, dass Krebsgewebe längere Relaxationszeiten aufwies [8]. Damadian glaubte, die ultimative Technologie für die Krebsdiagnostik gefunden zu haben [9].

3.2 Die Bestimmung der T1-Relaxationszeit

Nachdem die Relaxationszeiten als potenzieller gewebespezifischer Parameter zur Krebsdiagnose identifiziert waren, konzentrierten sich die wissenschaftlichen Arbeiten auf deren Bestimmung. Für die heutige Routinediagnostik spielt die Bestimmung der Relaxationszeiten zwar keine Bedeutung mehr, aber, es werden heute noch für die „Routine-diagnostik“ so genannte „Wichtungen“ erzeugt, bei denen ein gewebespezifischer Parameter den Bildkontrast dominiert und zur Differentialdiagnose verwendet wird (z.B. T1-wichtung).

Zur Bestimmung einer T1-Relaxationszeit wird entweder ein Inversionspuls verwendet und mit der Variation der Inversionszeit der Nulldurchgang ermittelt, oder, es werden Messungen mit unterschiedlicher Repetitionszeit durchgeführt.

3.3 Die Entdeckung des Spin-Echos

Bei der Bestimmung von T1-Relaxationszeiten wurde von Erwin Hahn ein so genannter „Dreckefekt“ beobachtet, in Form eines Signals ohne dass offensichtlich eine vorherige Anregung erfolgte. Das Phänomen beruht auf der refokussierenden Wirkung eines Hochfrequenzpulses. Danach regt ein Hochfrequenzpuls nicht nur an, sondern er dreht auch den „Fächer“ einer vorhandenen transversalen Kernmagnetisierung.

Offensichtlich gibt es zeitlich konstante und örtlich fixierte Dephasierungsmechanismen, die mit einem solchen „HF-Refokussierungspuls“ wieder rückgängig gemacht werden können – es formt sich ein „Spin-Echo“.
Nicht nur in der animierten Vorstellung des „flippenden“ Fächers leuchtet ein, dass ein 180° HF-Impuls eine optimale Refokussierung darstellt. Es sollte aber nie vergessen werden, dass es auch Refokussierungswinkel gibt, die kleiner als 180° sind, und dass letztlich jeder Anregungspuls auch eine refokussierende Wirkung hat. Das ist in der späteren Diskussion der SSFP-Sequenzen ein wichtiger Kernpunkt.

 Durch Wahl unterschiedlicher Repetitionszeiten lässt sich über die resultierenden Signalamplituden die Erholkurve ermitteln und damit eine Berechnung der gewebespezifischen T_1-Relaxationszeiten durchführen. Auch wenn das gemessene Signal kontaminiert ist durch den Einfluß von Protonendichte und der T_2-Relaxation, so ändert das nichts am Verlauf der natürlichen Funktion und kann als additiver Teil herausgerechnet werden.

3.4 Die magnetische Suszeptibilität – und T2*

© 2018 PD Dr. Wolfgang R. Nitz

3.5 Die Bestimmung der T2-Relaxationszeit

Nachdem die Relaxationszeiten als potentieller gewebespezifischer Parameter zur Krebsdiagnose identifiziert waren, konzentrierten sich die wissenschaftlichen Arbeiten auf deren Bestimmung. Für die heutige Routinediagnostik spielt die Bestimmung der Relaxationszeiten zwar keine Bedeutung mehr, aber, es werden heute noch für die „Routine-diagnostik“ so genannte „Wichtungen“ erzeugt, bei denen ein gewebespezifischer Parameter den Bildkontrast dominiert und zur Differentialdiagnose verwendet wird (z.B. T2-wichtung).

Zur Bestimmung einer T2-Relaxationszeit werden Messungen mit unterschiedlicher Echozeit (TE) durchgeführt.
3.6 Die Einführung des Diffusionsterms

\[
\frac{d \rho}{dt} = -\frac{\gamma}{\hbar} \sum \mathbf{M} \times \mathbf{\chi} \cdot \mathbf{B}_0 - \frac{\gamma \hbar}{2} \frac{\mathbf{M} \cdot \mathbf{B}}{\gamma_0} - \frac{\gamma \hbar}{2} \frac{\mathbf{M} \cdot \mathbf{B}^2}{\gamma_0^2} + \beta \mathbf{M}^2
\]

\[S = M_{xy} + \frac{TE}{T_{2*}} e^{-\beta T_{2*}}\]

Zeit in ms

3.7 Die Carr-Purcell (CP) Pulse Sequence

Das Problem der Kontamination der Messung der T2-Relaxationszeit durch die Brownsche Molekularbewegung, wurde mit Einführung einer Multi-Echo-Puls-Sequenz durch Herman Carr und Edward Purcell gelöst. Die Formierung eines weiteren Echos durch Anwendung eines weiteren zusätzlichen HF-Refokussierungspulses, reduziert in signifikanter Weise die Diffusionszeit und damit die Verfälschung des Signalverlustes durch die gewebespezifische T2-Relaxationszeit.

3.8 Die Carr-Purcell-Meiboom-Gill (CPMG) Pulse Sequence

Beträgt der Refokussierungswinkel bei der CP-Sequenz nicht exakt 180°, so kommt es zur systematischen Reduzierung späterer Echos und damit zu einem signifikanten Messfehler. Eine einfache Modifikation der CP Sequenz führt zu einer Reduktion des sich akkumulierenden Fehlers eines nicht perfekten HF-Refokussierungspulses. Wählt man für die Refokussierung eine andere Achse, als für die Anregung, so kompensiert sich der Fehler mit jedem geradzahligen HF-Refokussierungspulses.

3.9 Die räumliche Kodierung

Die räumliche Kodierung verwendet ausschließlich das Phänomen, dass die Larmorfre- quenz eine Funktion der Magnetfeldstärke ist.

Bei Variation der Magnetfeldstärke skalieren das Spektrum der Resonanzfrequenzen entsprechend. Zwischen Fett und Wasser herrscht eine Resonanzunterschied von etwa 3,5 ppm (das sind 217 Hz bei einem 1,5-T-System).

Bei vielen Anwendungen (Fettsättigung und SSFP Sequenzen), ist man auf eine Magnetfeldhomogenität angewiesen, die sich in der sechsten Stelle nach dem Komma nicht unterscheidet.
Den Vorgang, ein Magnetfeld zu homogenisieren, nennt man auch „Shimmen“.

Eine Anekdote besagt, dass ein schlechter Shimzustand Paul Lauterbur auf die Idee gebracht hat, dass ein räumlicher Magnetfeldgradient, mit der damit verbundenen örtlichen Abhängigkeit der Larmorfrequenzen, die Projektion eines Objektes ermöglichen könnte – und dass man mit Projektionen Bilder rekonstruieren kann, war mit der gerade aus der Taufe gehobenen Computertomographie schon bewiesen worden.

Die Veröffentlichung dieser Idee gelang Paul Lauterbur zwar nicht auf Anhieb, aber seine Hartnäckigkeit wurde letztlich mit dem Nobelpreis belohnt.

Der von Lauterbur verwendete CT-Rekonstruktionsalgorithmus, den man heute als radiale Abtastung bezeichnet, verursacht eine Verbreiterung der Punktbildfunktion.

Lauterbur präsentierte seine radialen Abtastung eines Objektes in Analogie zu der in der Computertomographie verwendeten Methode, auf einem Vortrag an der Universität Zürich, und wurde von Richard Ernst darauf aufmerksam gemacht, dass man mit der MRT, im Gegensatz zur CT, eine äquidistante Abtastung der Rohdatenmatrix durchführen kann. Der heutige Begriff dafür ist „kartesische Abtastung“. Bei der räumlichen Kodierung wird immer die Magnetfeldabhängigkeit der Resonanzfrequenz ausgenutzt. Eine Richtung bezeichnet man als „Frequenzkodierrichtung“. Bei der zweiten Richtung wird die Phasenlage der Magnetisierung zur Zuordnung verwendet und diese Richtung heisst entsprechend „Phasenkodierrichtung“.

Der damals eingeführte, im heutigen Sprachgebrauch allerdings nicht mehr übliche Ausdruck für eine solche Pulssequenz ist Spin-Warp.
4. Vorlesungsstunde: Patientenbelastung in der MRT

4.1 Die SAR-Belastung des Patienten

Die Energie pro Zeiteinheit wird dabei als spezifische Absorptionsrate – SAR, bezeichnet.

Das schwache molekulare Dipolmoment des Wassermoleküls versucht sich an dem E-Feld der eingestrahlten HF zu orientieren. Dies führt zu einer Beschleunigung der Molekülrotation, führt zur Erwärmung und wird als primäre Quelle der Erwärmung des Patienten durch HF gesehen.

\[W \approx \frac{\omega_0^2 \cdot B_1^2 \cdot h^5}{\rho} \]
\[\omega_0 = -\gamma H_0 \]
\[h = \text{Patientenumfang} \]
\[\rho \approx 1 \Omega m \quad \text{"Widerstand" in Patienten} \]

Die SAR ist proportional zum Quadrat der verwendeten Resonanzfrequenz, proportional zum Quadrat der vom HF Puls verwendeten \(B_1 \)-Amplitude, umgekehrt proportional zur inneren Leitfähigkeit des Patienten und – proportional zur fünften Potenz des Patientenumfanges!!!

Der Mensch braucht einen grundlegenden Energieumsatz, um warm zu bleiben. Diese so genannte metabolische Grundrate liegt etwa bei 90 W.

Die MR Sicherheitsrichtlinie IEC 60601-2-33 betrachtet 2 W/kg, das sind also 160 W für eine Durchschnittsperson, als unbedenklich.

Von 2 W/kg bis 4 W/kg ist der Patient zu überwachen. Der Energieumsatz von 320 W entspricht etwa dem metabolischen Umsatz eines Marathonläufers.

Über 4 W/kg hinaus darf der Patient nicht belastet werden und der Hersteller des MRT muss dieses über eine entsprechende Verriegelung sicherstellen.
Die tatsächlich einzuhaltende Tabelle ist ein wenig unübersichtlicher. Welcher Wert aber gerade grenzwertig ist, wird vom MR System von einem so genannten RF-watchdog überwacht.

4.2 Der SAR-Monitor

Der SAR-Monitor besteht aus zwei Pfaden:

Der 1. Pfad:

Patientenspezifische Eingaben dienen zu einer Abschätzung der potentiellen HF-Belastung.

Es geht hauptsächlich darum, welche „Einkoppelungsfläche“ der HF zur Verfügung steht (b - Patientenumfang). Diese wird in erster Linie aus dem Gewicht berechnet, unter Berücksichtigung des Geschlechts und des Alters.

Der 2. Pfad

4.3 Die PNS – die periphere Nervenstimulation

Das Schalten von Magnetfeldgradienten führt zu einer Spannungsinduktion in leitenden Medien.

Auch wenn der Mensch ein schlechter Leiter ist, mit den heutigen Magnetfeldgradienten lassen sich leicht Spannungen induzieren, deren Größenordnung in die Nähe der bioelektrischen Steuersignale unserer Extremitätenmuskulatur heranreicht. –

Es kann zu einer „Stimulierung der Muskeln“ kommen. Der Effekt ist vergleichbar mit den kommerziell erhältlichen Muskelstimulatoren, nur nicht ganz so vorhersehbar und potentiell schmerzhafter.

Eine mögliche Stimulation hängt stark von der Orientierung der Magnetfeldgradientenänderung ab. In dem Zusammenhang wird auch der Begriff slew-rate verwendet, eine Parameter, der sich aus der maximalen Magnetfeldgradientenamplitude ergibt, dividiert durch die Anstiegszeit (Je grösser die Amplitude und je kürzer die Anstiegszeit, um so grösser die slew-rate (in T/s)).

Ein entsprechender „Stimulationsmonitor“ verhindert, dass der Patient mit einer solchen Situation konfrontiert wird. Wird eine grosse Magnetfeldgradientenamplitude benötigt, so reduziert das System entsprechend die Rampenanstiegszeit. Wird eine kurze Anstiegszeit benötigt, so wird die Magnetfeldgradientenamplitude entsprechend reduziert. Liegt der Bereich zwischen 80% und 100% der so genannten PNS, dann kommt ein entsprechendes Warnfenster.
4.4 Magnetfeld-„Empfindungen“

In eine ähnliche Kategorie wie die periphere Nervenstimulation fällt der Effekt einer zu schnellen Bewegung in einem Magnetfeldgradientenfeld.

Diese Situation ist in näherer Umgebung des Magneten des MRT gegeben.

Das Magnetgradientenfeld an einem 3 T beträgt im Bereich der Patientenöffnung 4833 mT/m!

Eine hastige Bewegung im Bereich dieses Feldgradienten führt zu einem „Schwindelgefühl“.

Neben dem gut verstandenen Effekt der Spannungsinduktion bei einer Änderung des Magnetfeldes oder bei der Bewegung innerhalb eines Magnetfeldgradienten, stellt sich natürlich die Frage, welchen Effekt das statische Magnetfeld auf den Menschen hat.

Da die Zusammenhänge relativ komplex sind, helfen hier in erster Linie eher empirische Untersuchungen.

Was wiederum eindrucksvoll berechenbar und als experimentell beweisbar veröffentlicht wurde, ist der Einfluß eines statischen Magnetfeldes, auf unser Gleichgewichtsorgan:

MRI magnetic field stimulates rotational sensors of the brain. techn./dosim.

By: Roberts DC, Marcelli V, Gillen JS, Carey JP, Della Santina CC, Zee DS

Die experimentelle Verifizierung der temporären Beeinflussung des Gleichgewichtsorgans in Gegenwart eines starken Magnetfeldes ist schon eindrucksvoll. Bei einer Magnetfeldstärke von 3,0 T kommt es zu einer mechanischen Beeinflussung der Ionen im Bereich der Schnecke, die eine leichte Kopftrotation signalisieren. Diese Information wird an die Augenmuskulatur weitergegeben, die daraufhin die Rotation, die nicht vorhanden ist, kompensieren wollen.
5. Vorlesungsstunde – Bildgebungsssequenz

Mit den frühen Untersuchungen der T1- und T2 Relaxationszeiten hinsichtlich einer möglichen Diagnose und Unterscheidungsmöglichkeit von gutartigen und bösartigen Raumforderungen, wurden schon früh der Grundlagen für die spätere Bildgebung geschaffen.

5.1 Gewebespezifische Parameter

Die drei prinzipiellen gewebespezifischen Parameter, die man in der MRT zur Darstellung bringen möchte sind:
- Protonendichte
- T1-Relaxationszeit
- T2-Relaxationszeit

Die Dichte der Protonen im Raumelement sollte im direkten Zusammenhang stehen mit der Intensität des empfangenen Kernspinsignals.

Es werden in der Regel mehrere Anregungen benötigt, um genügend Informationen zum Bildaufbau zu erhalten. In der Zeit zwischen den Anregungen, der Repetitionszeit, kann sich wieder eine longitudinale Kernmagnetisierung im Gewebe aufbauen, entsprechend der gewebespezifischen T1-Relaxation.

Direkt nach der Anregung setzt eine Dephasierung der erzeugten transversalen Kernmagnetisierung ein, entsprechend der gewebespezifischen intramolekularen Dipol-Dipol-Wechselwirkung, charakterisiert über die T2-Relaxation.
5.2 Die MR Bildgebung

Für die schichtselektive Anregung und die räumliche Kodierung wird ein einziges Phänomen der Kernspinphysiologie ausgenutzt: Die Larmorfrequenz ist abhängig von der Magnetfeldstärke. Um eine örtliche Unterscheidung zu treffen, ist also eine räumliche Veränderung der Magnetfeldstärke kontrolliert umzusetzen. Dies geschieht über so genannte Magnetfeldgradientenspulen, oft auch abgekürzt einfach nur Gradientenspule genannt, die örtlich variable Magnetfelder erzeugen, die dem statischen Magnetfeld überlagert werden.

5.2.1 Die Magnetfeldgradientenspule

Ein Magnetfeldgradient wird dadurch erzeugt, dass man einen Strom durch eine entsprechend ge-wickelte Zylinderspule schickt, die in der einen Hälfte so gewickelt ist, dass das entstehende Magnetfeld das Grundmagnetfeld des supraleitenden Magneten vermindert, und auf der anderen Seite, bei entsprechender Umkehrung der Wickelrich-tung, das Magnetfeld verstärkt. Durch solche Wicklungen gehen etwa 400 Ampere, getrieben von Spannungen bis zu 2000 Volt.

Die derzeitige Größenordnung der erreichbaren Magnetfeldgradienten liegt bei 80 mT/m. Gezeigt ist hier die einfache Anordnung einer z-Gradientenspule. Etwas komplexer sind die entsprechenden Magnetfeldgradientenspulen in x- bzw. y-Richtung.

Wie bei den sicherheitsrelevanten Aspekten noch erläutert, bildet die menschliche Physiologie eine Begrenzung hinsichtlich der Gradientenstärke und Anstiegs geschwindigkeit eines Magnetfeldgradientensystems.

Die Schnelligkeit eines Gradientensystems wird durch den Quotienten aus Maximalamplitude und Anstiegszeit charakterisiert, der so genannten Slew-Rate. 1986 waren die Gradientenspulen noch luftge-kühlt mit einer Maximalamplitude von 3 mT/m und einer Slew-Rate von 3 T/m/s. Heute liegen wir bei Gradientenamplituden von 80 mT/m bei einer Slew-Rate von 200 T/m/s. Das Schalten der Magnetfeldgradienten stellt auch die primäre Geräuschquelle bei einer MR-Untersuchung dar.

Nach Hendrik Anton Lorentz wirkt auf einen stromdurchflossenen Leiter in Gegenwart eines starken Magnetfeldes eine mechanische Kraft, die so genannte Lorentz-Kraft. Diese Kraft ist die primäre Ursache der Vibration der Magnetfeldgradientenspule.
5.2.2 Die schichtselektive Anregung

Ein Magnetfeldgradient verschafft uns die Möglichkeit der schichtselektiven Anregung. Mit der örtlichen Variation der magnetischen Feldstärke, haben wir auch eine örtliche Abhängigkeit der Larmorfrequenz, der Resonanzfrequenzen. Die Position und die Dicke einer Schicht ist charakterisiert durch einen ganz bestimmten Frequenzbereich. Setzt sich der HF-Anregungspuls genau aus diesen Frequenzen zusammen, so werden nur die Protonen in dieser Schicht an diesem Ort angeregt (oder refokussiert), und nur aus dieser Schicht kommt das so genannte „Kernspin-Signal“.

Amplitude und Einstrahldauer eines HF-Pulses sind miteinander verküpft. Auch hier gelten die 42,58 Hz/T Präzessionsfrequenz, die dazu führen, dass die Kernmagnetisierung nicht nur um B0 präzediert, sondern auch um die magnetische Feldkomponente der HF-Strahlung B1.

Eine weitere Randbedingung für die Länge eines HF-Pulses ergibt sich aus der Anzahl der in einer anzuregenden Schicht vorkommenden Frequenzen. Eine Integration führt zu einer sogenannten SINC-Funktion. Ein ideales rechteckiges Anregungsprofil scheint nicht realisierbar. Aus Zeitgründen kommt die SINC-Funktion nur verstümmelt zur Anwendung, was zu einer Verschlechterung des Anregungsprofils führt. (Details s. Sequenzberechnung).
5.2.3 Die Frequenzkodierung

Die Kodierung über die Frequenzabhängigkeit nennt man Frequenzkodierung. In der nebenstehenden Abbildung wird eine sagittal angeregte Schicht angenommen und die Frequenzkodierrichtung ist anterior-posterior.

Den sequentiellen Ablauf von Gradientenschaltungen, Hochfrequenzimpulsen und der Datenakquisition bezeichnet man auch als „Bildgebungssequenz“ oder einfach „Sequenz“.

Die Analyse des Signals, mit folgender Zuordnung der Amplitude zu einer Helligkeitsstufe eine Pixel, welches ein Voxel repräsentiert, nennt man Fouriertransformation.

Einen numerisch relativ schnellen und eleganten mathematischen Algorithmus nennt man entsprechend eine „schnelle Fouriertransformation – FFT“.
Die Länge des Datenakquisitionsfensters ergibt sich aus der Fourierbedingung. Danach darf zwischen zwei Abtastpunkten nicht mehr als eine halbe Frequenzperiode liegen, sonst ist die Zuordnung nicht mehr eindeutig.

Die Bandbreite war dabei der Frequenzabstand zwischen zwei räumlichen Spalten in Frequenzkodierrichtung.

Für die Entwicklung der transversalen Magnetisierung zweier benachbarter Raumelemente ergibt sich dabei als Ausgangspunkt ein entgegengesetztes Vorzeichen der transversalen Kernmagnetisierungen in Frequenzkodierrichtung. Über die Länge des Datenakquisitionsfensters dreht sich die benachbarte transversale Kernmagnetisierung um 360°, wobei gleichzeitig \(N \) Datenpunkte aufgenommen werden, mit \(N \) als Matrixauflösung in Frequenzkodierrichtung.

Anwendungen, die von einer kurzen Echozeit profitieren, verwenden in der Regel eine hohe Bandbreite.

5.2.4 Die Phasenkodierung

Auch bei der Kodierung in der zweiten Dimension wird nichts weiter ausgenutzt als die Tatsache, dass die Larmorfrequenz eine Funktion der örtlich vorliegenden Magnetfeldstärke ist, und durch eine Veränderung der Magnetfeldstärke über die Frequenz eine Rauminformation kodiert werden kann. Durch kurzes Schalten eines Magnetfeldgradienten vor der Datenakquisition, lässt sich so die Phasenlage der transversalen Kernmagnetisierungen und damit auch die Phasenlage des induzierten Signals kodieren.

5.2.5 Die Bildgebungssequenz

Die so akquirierte Datenreihe wird in einer so genannten Rohdatenmatrix abgelegt. Die Anzahl der Meßpunkte dieser Datenreihe wird bestimmt durch die vom Benutzer gewählte Auflösung (Matrixgröße in Frequenzkodierrichtung). Eine Datenreihe heisst auch Fourierzeile, oder k-Raumzeile. Da mehrere Fourierzeilen notwendig sind, um ein Bild zu konstruieren, heisst die Rohdatenmatrix auch k-Raum. Die Anzahl der zu messenden Fourierzeilen wird bestimmt durch die gewünschte Auflösung in Phasenkodierrichtung (Matrixgröße in Phasenkodierrichtung).

Entsprechend der Fourierbedingung lassen sich zwei benachbarte Raumelemente voneinander unterscheiden, wenn sich die benachbarten transversalen Kernmagnetisierungen gegeneinander um 360° gedreht haben.

Der erste Punkt einer k-Raumzeile repräsentiert also die Situation, dass die transversalen Kernmagnetisierungen benachbarter Raumelemente entgegengesetztes Vorzeichen haben.
Entsprechend repräsentiert der letzte Punkt einer k-Raumzeile die gleiche Situation.

In Frequenzkodierrichtung entspricht der Abstand zwischen zwei Datenpunkten dem Abstands raster des Analog-zu-Digitalwandlers. Das Abstands raster wird entsprechend der vom Benutzer gewählten Bandbreite automatisch eingestellt.

Der Datenraum in Phasenkodierrichtung hat im Prinzip die gleiche Struktur. Hier ist allerdings der zeitliche Abstand zwischen den Fourierzeilen gegeben durch die Zeit, die man zwischen den Repetitionen, den Wiederholungen, lässt. Die Zeit heisst entsprechend Repetitionszeit – TR.

Vereinfacht und anschaulich illustriert wird für die erste Fourierzeile in Phasenkodierrichtung die gleiche Situation erzeugt, wie für den ersten Datenpunkt der Fourierzeile: transversale Magnetisierungen in Phasenkodierrichtung erhalten entgegengesetzte Vorzeichen ihrer transversalen Kernmagnetisierungen.

Im Zentrum des k-Raums zeigen alle Kernmagnetisierungen (idealerweise) in die gleiche Richtung und es kommt zu einer maximalen Signalinduktion. Damit ist das Gesamtsignal der Schicht dokumentiert, ohne jegliche Rauminformation.

Die erste Fourierzeile erlaubt zwar die Identifikation benachbarter Raumelemente in Phasenkodierrichtung, aber noch nicht in eindeutiger Form. Zur eindeutigen Zuordnung sind weitere Phasenkodierschritte notwendig, die weitere „Raumfrequenzen“ abtasten.

5.2.6 Der k-Raum

Die Rohdatenmatrix wird auch k-Raum genannt. Die Bedeutung dieses k-Raum lässt sich u.a. dadurch veranschaulichen, dass man nur einen Teil des k-Raums für die Rekonstruktion eines Bil des verwendet.

Dabei wird deutlich, dass die wichtigsten Informationen im Zentrum des k-Raums zu finden sind. Wenige Zeilen um das k-Raum Zentrum herum bestimmen die Grobstruktur des abzbildenden Objektes, einschließlich des dominierenden Kontrastes.
In den äußeren k-Raumzeilen findet sich die Detailinformation.

Die Signalamplituden in den äußeren k-Raumpunkten sind sehr gering, weil hier im Extremfall die Situation provoziert wird, dass die transversalen Magnetisierungen benachbarter Raumelemente entgegengesetzte Vorzeichen haben, und das induzierte Signal damit fast Null ist. Ein homogenes Phantom dürfte in diesen Punkten gar kein Signal liefern.

Im k-Raum selber lassen sich also wie vorhergehend erwähnt mehrere Extrempunkte finden, als Randbedingung zur Fouriertransformation. In den Eckpunkten finden sich jeweils Situationen, in denen die Phasenlage der transversalen Kernmagnetisierungen entgegengesetzte Vorzeichen haben. Im Zentrum des k-Raums zeigen alle transversalen Magnetisierungen in die gleiche Richtung und induzieren damit das Signal mit einer Maximalamplitude.

Eine Ausführungsform des Signalempfangs verwendet zwei senkrecht zueinander angeordnete Antennensysteme, in denen das Signal entsprechend phasenverschoben induziert wird.

\[S \approx e^{i\omega t} \]
\[\Delta t = 2\pi / \Delta \nu \]
\[\Delta \nu = y \cdot G_x \cdot \Delta t \]
\[k_x = y \cdot G_x \cdot \Delta t \cdot u = m/2 \ldots + m/2 - 1 \]
\[S \approx e^{i2\pi y G_x \cdot \Delta t} \]

In imaginärer Schreibweise lässt sich hier gleich der oszillierende Anteil in der natürlichen Funktion herleiten.

Der Unterschied in Kreisfrequenzen ist dabei bestimmt durch die gewählte räumliche Auflösung und dem verwendeten Magnetfeldgradienten, der letztlich die Bandbreite vorgibt.

Der Abstand zwischen den Datenpunkten in Frequenzrichtung multipliziert mit dem angewendeten Magnetfeldgradienten kann einem Index \(k \) zugeordnet werden.

Das Signal kann letztlich ausgedrückt werden als Funktion dieses \(k \)-Werts multipliziert mit der gewählten räumlichen Auflösung.
In der Rohdatenmatrix sind diese k-Werte entsprechend indiziert. Üblich ist eine 256*256 Matrix, wenngleich in neuerer Zeit auch größere Matrizen gefahren werden.

Desgleichen muss eine solche Matrix nicht unbedingt symmetrisch sein.

Darauf wird in dem Abschnitt zu den Protokollparametern noch näher eingegangen werden.

Eine andere Perspektive des k-Raums veranschaulicht den Begriff der Raumfrequenz:

Jeder Datenpunkt des k-Raums repräsentiert die Intensität mit der eine bestimmte Intensitätschwankung im rekonstruierten Bild vorkommt.

Je weiter der betrachtete k-Raumpunkt vom k-Raum-Zentrum entfernt ist, umso größer ist die Oszillationsfrequenz der Intensitätsschwankung.

Die Summation und Normierung all dieser Intensitätsschwankungen ergibt letztlich das Bild.
6. Vorlesungsstunde – Berechnung einer Bildgebungssequenz

6.1 Die schichtselektive Anregung

Wie wir sehen werden, haben die historischen Randbedingungen zum Teil auch heute noch einen Einfluss auf die Sequenzgestaltung. Bei der Anregung einer Schicht stellt sich als erstes die Frage, mit welchem Frequenzbereich möchte man arbeiten. Dieser Frequenzbereich bestimmt letztlich die chemische Verschiebung in der Schicht und, wie wir noch sehen werden, die Zeidauer der HF-Einstrahlung.

6.1.1 Amplituden für den Schichtselektionsgradienten

Die historisch bedingte Wahl der Frequenzbandbreite eines HF-Anregungspulses, hat sich aus der verfügbaren Gradientenstärke ergeben. Man wollte mit einem 3 mT/m Gradientensystem mindestens eine 8 mm dicke Schicht anregen können. Bei einer 10 mm Schicht braucht man entsprechend 2,4 mT/m und das ergibt eine Frequenzbandbreite von etwa 1000 Hz.

6.1.2 Berechnung des HF Pulses

Zur Bestimmung der Form des HF Pulses ist es eine relativ gute Näherung, über den Frequenzbereich der Schicht zu integrieren. Die Umsetzung der Eulerschen Formel führt letztlich auf die SINC-Funktion.

Bei diesem Verfahren wird das Profil des Anregungspulses unter Berücksichtigung der Bloch-Gleichung und der Verwendung von Rotationsmatrizen bestimmt.

Mit nur wenigen Spulenkonzepten lassen sich homogene \(B_1 \)-Verteilung im gesamten Schichtvolumen erzielen. Änderungen in der \(B_1 \)-Amplitude haben aber bei SINC-Pulsen unterschiedliche Anregungswinkel zur Folge. Hier greift die Klasse der adiabatischen HF-Pulse. Diese haben einheitliche Rotationswinkel im gesamten Schichtvolumen zum Ziel, auch wenn das \(B_1 \)-Feld nicht konstant gehalten werden kann.

Primär gibt es im menschlichen Körper Wasser und Fett, und manchmal möchte man nur das eine oder das andere anregen. Die Resonanzfrequenz unterscheidet sich um 3,5 ppm und eigentlich brauchen wir die Resonanzfrequenz für die Definition von Ort und Dicke der anzuregenden Schicht.

An dieser Stelle kommen die so genannten „Bionomialpuls“ zum Einsatz. Wie in der nebenstehenden Abbildung ersichtlich, kann ich über eine solche HF-Pulskombination sowohl räumlich, als auch spektral-selektiv sein.
Im Jahre 1993 lag die Gradientenstärke schon bei 30 mT/m. Bei gleicher Bandbreite für den Anregungspuls, hätte man mit dieser Gradientenstärke schon Schichtdicken von 0,74 mm erreichen können.

Der Sequenzentwickler muss auch heute noch den Parameterraum festlegen, den der Benutzer einstellen darf. Dieser Parameterraum ist natürlich an die Leistungszahlen des entsprechenden Kernspintomographen geknüpft.

6.1.3 Gradientenrampenzeiten

Vor 1997 musste der Sequenzentwickler die Gradientenrampenzeit noch für den „schlimmsten Fall“ konzipieren.

Bei einer angenommenen minimalen Schichtdicke von 1 mm, hätte man bei dem 1kHz HF-Puls eine Gradientenstärke von 24 mT/m gebraucht. Bei einer Gradientenanstiegszeit von 400 µs auf 30 mT/m, bedeutet dies eine zu berücksichtigende Rampenzeit von 320 µs.

6.1.4 Timing

Sobald eine transversale Kernmagnetisierung erzeugt ist, wird der über den Schichtselektionsgradienten erzeugte Frequenzunterschied zu einer Dephasierung der Verteilung der Kernmagnetisierungen in Richtung Schichtselektion führen.

Diese Dephasierung würde zu einem Signalverlust führen und wird idealerweise wieder refokussiert bzw. rephasiert.

In einer guten Näherung kann man annehmen, dass die transversale Kernmagnetisierung im Zentrum des Anregungspulses schlagartig entstanden ist und sich danach entsprechend der Amplitude des Schichtselektionsgradienten verteilt hat, bis zum Zeitpunkt des Abschaltens dieses Gradienten.

Die Kompensation dieser Dephasierung kann durch einen Gradientenpuls entgegengesetzter Polarität kompensiert werden.
6.2 Die Frequenzkodierung

Amplitude und Zeidauer des so genannten Auslesegradienten ergeben sich aus der Wahl der Bildbandbreite. Je niedriger die Bildbandbreite gewählt wird, um so größer ist der Artefakt der chemischen Verschiebung, um so enger kann ich aber den Filter wählen, der mir das Patientenrauschen einschränkt. Eine niedrige Bandbreite bedeutet aber auch ein langes Datenakquisitionsfenster und damit auch eine relativ lange Echozeit.

6.2.1 Länge des Datenakquisitionsfensters

Die Länge des Datenakquisitionsfensters ergibt sich aus der Fourierbedingung. Danach darf zwischen zwei Abtastpunkten nicht mehr als eine halbe Frequenzperiode liegen, sonst ist die Zuordnung nicht mehr eindeutig.

\[T = N \cdot \Delta T = \frac{1}{2 \Delta v} \]

Die Bandbreite war dabei der Frequenzabstand zwischen zwei räumlichen Spalten in Frequenzkodierrichtung.

Für die Entwicklung der transversalen Magnetsierung zweier benachbarter Raumelemente ergibt sich dabei als Ausgangspannung ein entgegengesetzt gesetztes Vorzeichen der transversalen Kernmagnetisierungen in Frequenzkodierrichtung. Über die Länge des Datenakquisitionsfensters dreht sich die benachbarte transversale Kernmagnetisierung um 360°, wobei gleichzeitig \(N \) Datenpunkte aufgenommen werden, mit \(N \) als Matrixauflösung in Frequenzkodierrichtung.

Anwendungen, die von einer kurzen Echozeit profitieren, verwenden in der Regel eine hohe Bandbreite.

Bei der Wahl der Bandbreite muss letztlich die Leistungsfähigkeit des Analog-zu-Digital-Konverters berücksichtigt werden. Die geforderte Abtastrate muss von letzterem realisierbar sein.

Aus der Wahl der Bandbreite ergibt sich zwangsläufig die Gradientenamplitude des Frequenzkodiergradienten.

Wie schon bei dem Parameterraum der Schichtdicke, muss der Sequenzentwickler festlegen, welchen Parameterraum er hinsichtlich der Wahl des Meßfeldes zulassen kann.

Bei einer Bandbreite von 130 Hz und einer SYSTEMLEISTUNG von 30 mT/m könnte das System ein Meßfeld von bis zu 52 mm erlauben.
6.2.2 Gradientenrampenzeiten

Da die Größe des Messfeldes auch die maximal verwendete Gradientenamplitude bestimmt und über diese Amplitude die einzuplanende Rampenzeit bestimmt wird, kann es unter Berücksichtigung der typischen Anwendungsfälle auch zu der Wahl einer niedrigeren maximalen Gradientenamplitude kommen, als das System eigentlich liefern könnte. Mit diesem Schritt lässt sich die einzuplanende Rampenzeit entsprechend kürzer wählen.

6.2.3 Timing

6.3 Die Phasenkodierung

Senkrecht zur Schichtselektionsrichtung und senkrecht zur Ausleserichtung wird der Phasenkodiergradient geschaltet. Gilt für den ersten Datenpunkt der Fourierzeile eine Situation der entgegengesetzten Kernmagnetisierung in benachbarten Raumelementen, so lässt sich dies auf die erste Fourierzeile übertragen. Bei der ersten Fourierzeile wird die transversale Kernmagnetisierung benachbarter Raumelemente so eingestellt, dass sie entgegengesetzte Vorzeichen haben.

6.3.1 Das Amplitudenzeitintegral

Im Gegensatz zur Schichtselektions- oder Frequenzkodierrichtung, kommt es bei der Phasenkodierung nicht auf eine bestimmte Gradientenamplitude an. Für die Phasenentwicklung ist das Produkt aus Amplitude und Zeidauer des Gradienten relevant.
6.3.2 Gradientenrampenzeiten

Berechnung der Gradientenrampenzeit entsprechend der Maximalamplitude.

6.4 MPG – Das Medizinproduktegesetz

Für die Entwicklung von Geräten, die in der medizinischen Diagnostik und Therapie eingesetzt werden, gilt das Medizinproduktegesetz – MPG.

In den Vereinigten Staaten wird die Kontrolle über die Medizinprodukte durch die FDA (food and drug administration) durchgeführt. Jedes medizinische Gerät braucht eine FDA-Zulassung. Zu dokumentieren ist, warum man etwas macht, dass es sinnvoll ist, wie man es macht und wie man getestet hat, dass es macht was es machen soll und was das Ergebnis war. Das trifft auch auf die Sequenzentwicklung zu.

6.5 SDE – Sequence Development Environment

Der eigentliche Quellcode ist derzeit C++.

Das SDE ist nicht nur modular und flexibler, es erlaubt auch die Anpassung von Sequenzen an unterschiedliche Gerätekonfigurationen. Es beinhaltet gleichzeitig Testroutinen, die direkt nach der Programmierung angewendet werden können, um zumindest den theoretisch korrekten Ablauf, noch vor der Übertragung auf das Gerät zu verifizieren.

6.5.1 IDEA – Integrated Development Environment for Applications

Die eigentliche Sequenzentwicklung erfolgt innerhalb eines IDEA-Tools (bei Siemens).

Sprache ist derzeit C++.

Was sich in den letzten vierzig Jahren nicht geändert hat, ist die Definition von Variablen, die man in seinem Programm verwenden möchte:
Nach der Definition der Variablen erfolgt die Belegung. Hier legt der Sequenzprogrammierer wie seit 1986 den Rahmen der Parameter fest, den der Benutzer selektieren können soll.

```c
// Definition of used real time objects

// Prototype of function [not in kernel]
static HLS_STATIC int NumChannels(thisProc, SeqLine, SeqDepo, long long);

// Declaration of used real time objects
static sWAVE_FOC sWFOC[1]; // Min/Max is a single-5e sequence but still needs functions that use an array as most sequences are multiplication
static sRF_PERE_KER sRFKer[5]; // RF transmit waveform envelope
static sPRED_PERE sRFKer[5]; // Set Frequency and phase for RF pulse
static sPRED_PERE sRFKer[5]; // Reset synthesizer back to base
static sDEKT sDEKT[1]; // Signal detection event
static sRF_PERE sRFKer[5]; // Set Frequency and phase for ADC
static sPRED_PERE sRFKer[5]; // Reset synthesizer back to base
static sHFF sRFKer[5]; // RF filter
static sRFKer[5]; // Gradient during RF transmit (to slice selection)
static sRFKer[5]; // Gradient to reduce slice selection gradient (after TE = 0)
static sRFKer[5]; // Gradient to prevent readout
static sRFKer[5]; // Gradient for phase encoding
static sRFKer[5]; // Gradient for readout steady-state
static sRFKer[5]; // Gradient for readout

// Synchronization event for oscilloscope trigger
```

Nach der Definition der Variablen erfolgt die Belegung. Hier legt der Sequenzprogrammierer wie seit 1986 den Rahmen der Parameter fest, den der Benutzer selektieren können soll.
Berechnung der HF-Amplitude:

```
// Berechnung der HF-Amplitude

// Initialisierung der Parameter

// Bildgebung in der radiologischen Diagnostik II - Magnetresonanztomographie

Passen gewähltes TE und gewähltes TR? Wenn nicht, sind entsprechende Nachrichten dem Benutzer über so genannte „Pop-ups“ mitzuteilen, mit Vorschlägen und Wahllmöglichkeiten:

```
Überprüfung von Sequenzablauf: Wird die Spezifikation des Magnetfeldgradientensystems eingehalten? Liegen Anstiegszeit und Amplitude der geforderten Magnetfeldgradienten unterhalb der Schwelle, die beim Patienten eine periphere Nervenstimulation verursachen könnte?

Wenn alles klar ist, kommt es zu Ausführung der Sequenz:

Das eigentliche Sequenztiming hat eine ziemliche Ähnlichkeit mit dem alten PARGEN:
6.5.2 **ICE – Image Calculation Environment**

1. Konfiguration der Bildrekonstruktionspipeline (Functor chain) auf dem Host (Windows XP)
2. Ausführung der Bildrekonstruktionspipeline auf dem Imager (Linux)

Intelligent Runtime Imager System

Die Bildberechnung erfolgt heutzutage immer noch auf einem separaten „Bildrechner“, aber nicht mehr herstellerspezifisch, sondern ebenfalls seit Jahren angekoppelt an den PC-Markt. Auch wenn sowohl die Sequenzenentwicklungssprache, als auch die Bildrekonstruktionssprache derzeit C++ basiert sind, so nutzt ICE, die mit dem Schritt von C auf C++ möglichen Feinheiten in manchmal schwer zu durchschauender Eleganz aus.
7. Die MR Sequenzfamilie (Übersicht)

Es ist natürlich müßig über die „Wichtigkeit“ bestimmter Bildgebungsequenzen zu diskutieren.

Bevor wir uns allerdings weiter im Detail verlieren, sei an dieser Stelle eine Übersicht gebracht, über alle „Sequenzen“ und ihre typischen Anwendungen, ohne im Detail auf die Funktion einzugehen [51].

7.1 CSE – die konventionelle Spin-Echo-Sequenz

Die herkömmliche Spin-Echo Sequenz wird oft auch CSE genannt und ist die grundlegende Sequenz in der T1-gewichteten Bildgebung vor und nach Kontrastmittelgabe.

7.2 GRE – die Gradienten-Echo-Sequenz

Auf Grund der dicht beieinanderliegenden T1-Relaxationszeiten von GHS und WHS bei höheren Feldstärken, und dem damit verbundenen düften Kontrast in der T1-W SE-Bildgebung, hat man die GRE „wiederentdeckt“. GRE steht Synonym für FLASH, FISP, GRASS, SPGR, FFE oder FFE-T1.

Die GRE fällt in der Kategorie Einzel-Echo Techniken unter der Rubrik „Gradienten-Echo“.
Auf Grund der T2*-Sensitivität bildet die GRE die Grundlage für ein Protokoll zum Nachweis von Blutungen bzw. Blutzerfallsprodukten.

Es ist nur darauf zu achten, dass eine hinreichend lange TE-Zeit auch die Ausbildung der erwarteten Artefakte garantiert.

Die GRE Sequenzen, sei es FLASH oder FISP, bilden die Grundlage für (fast) alle MR Angiographien.

(Mit der NFS-Diskussion werden auch Alternativen wieder interessant).

Auf die Unterschiede zwischen trueFISP, CISS, DESS, FISP, FLASH und VIBE, die alle zu den Einzelecho-Techniken zählen, soll später noch eingegangen werden.

7.3 TSE, FSE – die Multi-Echo Spin-Echo-Sequenzen

Die TSE wurde schon eingehend eingeführt. Sie bildet die Grundlage für alle PD-W und T2-W.

Die TSE fällt in der Kategorie Multi-Echo Techniken unter die Rubrik „Spin-Echo“.

7.4 SPACE, CUBE, VISTA

Die SPACE wurde schon erläutert und kann im Prinzip überall dort eingesetzt werden, wo auch eine TSE eingesetzt werden kann. Sie bildet die Grundlage für alle PD-W und T2-W. Bei anderen Herstellern wird die Bezeichnung CUBE bzw. VISTA verwendet.

Die SPACE fällt in die Kategorie Multi-Echo Techniken unter die Rubrik „Spin-Echo“ – auch wenn hier mit der Refokussierung der transversalen Kernmagnetisierung gespielt wird.
7.5 FLAIR – die FLuid-Attenuated Inversion Recovery

Auch diese Sequenz wurde schon vorgestellt. Es handelt sich um eine TSE mit einem vorgestellten Inversionspuls unter Verwendung einer sehr langen Inversionszeit – zur Unterdrückung von Gewebe mit langen T1-Relaxationszeiten.

Die FLAIR fällt in der Kategorie "Multi-Echo Techniken mit Vorbereitung der Magnetisierung" unter die Rubrik "Spin-Echo".

Dieser Inversionsansatz zur Unterdrückung des Liquorsignals kann natürlich auch mit dem SPACE Akquisitionsschema kombiniert werden.

7.6 TIR – die phasensensitive IR-TSE

Auch diese Sequenz wurde schon vorgestellt. Es handelt sich um eine TSE mit einem vorgestellten Inversionspuls, unter Verwendung einer Inversionszeit von ca. 350 ms – zur Optimierung des Kontrastes zwischen WHS und GHS. Bei der Bilddarstellung wird die Phasenlage der transversalen Kernmagnetisierung berücksichtigt.

Die TIR fällt in der Kategorie Multi-Echo Techniken mit Vorbereitung der Magnetisierung unter die Rubrik „Spin-Echo“.

7.7 STIR – die Fettunterdrückungstechnik

Auch diese Sequenz wurde schon vorgestellt. Es handelt sich um eine TSE mit einem vorgestellten Inversionspuls unter Verwendung einer kurzen Inversionszeit von ca. 170 ms – zur Unterdrückung des Fettsignals.

Die STIR fällt in der Kategorie Multi-Echo Techniken mit Vorbereitung der Magnetisierung unter die Rubrik „Spin-Echo“.

7.8 RESTORE, DRIVE, FRFSE – die TSE mit Flip-Back-Puls

Auch diese Sequenz wurde schon vorgestellt. Es handelt sich um eine TSE mit einem „Flip-Back-Puls“ am Ende des Echozuges. Dadurch kommen alle Gewebearten, die am Ende eines Echozuges noch nennenswerte transversale Magnetisierung vorweisen können (Liquor und andere Flüssigkeiten), heller zur Darstellung – wird also ausschließlich in der T2-W angewandt.

Die RESTORE fällt in der Kategorie Multi-Echo Techniken mit Vorbereitung der Magnetisierung unter die Rubrik „Spin-Echo“.
7.9 MP-RAGE – T1-W 3D-GRE

Bei der „magnetization prepared rapid acquired gradient echo“ – MP-RAGE, handelt es sich um eine 3D-GRE, bei der in der Partitionsschleife ein Inversionspuls platziert ist, um eine T1-W aufzuprägen. Entsprechend kommt diese Technik in der T1-W im ZNS zur Anwendung.

Bei anderen Herstellern werden für ähnliche Techniken die Begriffe 3D FSPGR bzw. 3D TFE verwendet.

Die MP-RAGE fällt in der Kategorie Multi-Echo Techniken mit Vorbereitung der Magnetisierung unter die Rubrik „Gradienten-Echo“.

7.10 CISS – Constructive Interference Steady State

Die CISS, bei einem anderen Hersteller auch als „3D PC FIESTA“ bezeichnet wird, ist ein Vorläufer der trueFISP. Die Anregungspulse können bei dieser Technik auch als Refokussierungspulse auf frühere Anregungen angesehen werden, so dass man hier von Spin-Echo Beiträgen reden kann – und Suszeptibilitätsunterschiede in der Schädelbasis offensichtlich keine Konsequenzen haben.

Die CISS fällt in der Kategorie Einzel-Echo Techniken „eigentlich“ unter die Rubrik „Spin-Echo“.

7.11 HASTE – Half Fourier Acquired Single Shot TSE

In anbetracht der langen Echozeit kommt HASTE ausschliesslich in der T2-W und primär in der Pränataldiagnostik (und der MRCP) zur Anwendung.

Die HASTE fällt in der Kategorie Multi-Echo Techniken unter die Rubrik „Spin-Echo“.

Bei anderen Herstellern werden ähnliche Ansätze mit den Akronymen SS-FSE bzw. SS-TSE bezeichnet.

7.12 DW-SE-EPI – die diffusionsgewichtete EPI

Bei der DW-SE-EPI, der diffusionsgewichteten Spin-Echo Echo-Planaren-Bildgebung, wird innerhalb einer Spin-Echo Einhüllenden der transversalen Kernmagnetisierung durch so genannte Diffusionsgradienten eine Diffusionswichtung aufgeprägt und mit einem EPI-Auslesemodul ausgelesen.

Die DW-SE-EPI fällt in die Kategorie „Hybridtechnik mit Vorbereitung der Magnetisierung“.
7.13 **FLASH, FISP, DESS, CISS, trueFISP**

Bei FLASH wird die transversale Kernmagnetisierung am Ende einer Messung zerstört, „gespoilt“. Bei der FISP wird die transversale Kernmagnetisierung teilweise, bei der CISS, DESS und trueFISP vollständig refokussiert. Dies führt zu zunehmender Signalintensität für Strukturen mit längerer T2-Relaxationszeit.

FLASH, FISP, DESS, CISS und trueFISP fallen in der Kategorie Einzel-Echo Techniken „eigentlich“ unter die Rubrik „Gradient-Echo“ ... mit Übergang zum „Spin-Echo“.

7.14 **VIBE – die 3D GRE mit Volumeninterpolation**

Bei der VIBE handelt es sich um eine 3D GRE, bei der eine Fourierinterpolation in Partitionskodierrichtung provoziert wird. Ursprünglich für Atemhaltetechniken im Abdomen gedacht, hat sich das Akronym „Volume Interpolated Breathhold Examination – VIBE“ angeboten.

VIBE fällt in der Kategorie Einzel-Echo Techniken unter die Rubrik „Gradient-Echo“.

Andere Hersteller verwenden für ähnliche Ansätze das Akronym LAVA-XV, bzw. THRIVE.

7.15 **GRE – In-Phase, Opposed-Phase Bildgebung**

Im Abdomen kommt bei der GRE, in der Regel einer FLASH, das Phänomen der In-Phase – Opposed-Phase Bildgebung zum tragen. Hier wird die Phasenverschiebung der transversalen Magnetisierung zwischen Fett und Wasser, in Abhängigkeit der Echozeit, zur Differentialdiagnostik von Raumforderungen herangezogen.

GRE fällt in der Kategorie Einzel-Echo Techniken unter die Rubrik „Gradient-Echo“.

7.16 **TSE – in der abdominellen Bildgebung**

Erst die Einführung der Multi-Echo Spin-Echo Techniken hat zu einer Reduktion von Meßzeiten geführt, die eine T2-W in der abdominellen Bildgebung erst möglich macht (bei angehaltenem Atem).

Die TSE fällt in der Kategorie Multi-Echo Techniken unter die Rubrik „Spin-Echo“.
7.17 MRCP – Magnetresonanzcholangiopankreatographie

Die MRCP ist natürlich keine Sequenz. Aber alle Sequenzen, die primär eine starke T2-W in kurzer Messzeit erlauben, kommen für eine MRCP in Frage. Darunter fallen die HASTE, die RESTORE und evtl. auch die SPACE.

7.18 trueFISP – die „wahre“ FISP

Die trueFISP, auch bFFE, bSSFP oder FIESTA genannt, ist die „wahre“ FISP, weil es dem Sequenzkonstrukt entspricht, welches ursprünglich als FISP beschrieben, in dieser Form aber erst einmal wegen zu großer Artefaktanfälligkeit nicht so implementiert wurde – eben erst Jahre später, als die Hardware den notwendigen Reifegrad erreicht hatte. Die trueFISP eignet sich hervorragend für dynamische Aufnahmen, wie es in der Herzbildgebung gefordert ist.

Die trueFISP fällt in die Kategorie Einzel-Echo Techniken unter die Rubrik „Gradienten-Echo“ (mit signifikanten refokussierten Anteilen (Spin-Echos).

7.19 TFL – die turboFLASH

Die turboFLASH – TFL, ist eine FLASH, bei der ein vor der Gesamtmessung platzierter Inversions- oder Sättigungspuls, eine T1-Wichtung aufprägt. Mit einer solchen Kontrastmanipulation lassen sich z.B. Gewebearten mit bestimmter T1-Relaxationszeit ausblenden, was bei der Perfusionsbestimmung des Herzmuskels ausgenutzt wird.

Die turboFLASH fällt in der Kategorie Einzel-Echo Techniken mit Vorbereitung der Kernmagnetisierung unter die Rubrik „Gradienten-Echo“.

Der TFL ähnliche Techniken werden bei anderen Herstellern unter der Bezeichnung FSPGR bzw. TFE geführt.

7.20 MEDIC – Multi-Echo Data Image Combination

Die MEDIC ist eine Multi-Echo Gradienten-Echo Sequenz, bei der die multiplen Gradientenechos nicht mit einer zusätzlichen Phasenkodierung versehen werden, sondern „einfach“ zwecks Mittelelung als zusätzliche Akquisition mitgenommen werden, und, da spätere Echos berücksichtigt werden, eine zusätzliche T2-Wichtung beinhaltet.

Die MEDIC fällt in der Kategorie Multi-Echo Techniken unter die Rubrik „Gradienten-Echo“.

Andere Hersteller bezeichnen ähnliche Techniken mit MERGE bzw. M-FFE.
7.21 **FISP – Fast Imaging with Steady-state Precession**

Im Gegensatz zur FLASH wird bei der FISP am Ende eines Echos die transversale Magnetisierung in Phasenkoderrichtung refokussiert. Dadurch kommt es zu einer Signalerhöhung für alle Gewebarten, die eine längere T2-Relaxationszeit haben. Dies gilt allerdings nur für den Fall sehr kurzer Repetitionszeiten und nur bei Verwendung relativ großer Anregungswinkel. Sind diese Voraussetzungen nicht gegeben, so erhält man einen FLASHähnlichen Kontrast.

Andere Hersteller führen für diese Art Sequenz die Bezeichnung GRASS bzw. FFE. Die FISP fällt in der Kategorie Einzel-Echo Techniken unter die Rubrik „Gradienten-Echo“ (mit refokussierten Anteilen (SE)).

7.22 **TGSE, GRASE – die Gradienten- und Spin-Echo Sequenz**

Die TGSE fällt in der Kategorie „Multi-Echo Techniken“ in die Rubrik „Hybride“.

7.23 **Herstellerspezifische Akronymen**

Teilweise aus historischen Gründen, haben die Hersteller für „ihre“ Sequenz natürlich entsprechende Markennamen eingeführt, so dass Vergleichstabellen notwendig sind, um auf Ähnlichkeiten hinzuweisen. Für die Hersteller Philips und GE sind diese Vergleichstabelle untenstehend angegeben.
8. Vorlesungsstunde – Hardware

8.1 Magnet-Technologie

Das Phänomen des Kernspins ist nur in Gegenwart eines „starken“ Magnetfeldes beobachtbar. Es gibt derzeit drei primäre Möglichkeiten ein Magnetfeld zu erzeugen.

Ein Magnetfeld mit einer maximalen Obergrenze von etwa 0,35 T lässt sich durch „zusammenkleben“ von Permanentmagneten realisieren. Die Herstellungskosten für solch ein System sind „relativ“ gering. Die Betriebskosten sind ebenfalls gering (kein Helium, geringe Stromkosten). Nachteilig für ein solches System sind die geringe Feldstärke (niedriges SNR), die temperaturabhängig der Feldstärke (Bildqualität und Artefakte) und das Gewicht (ca. 14 T)

Eine zweite Möglichkeit besteht natürlich darin, wie von Hans Christian Oersted gefunden, einen Strom durch eine Zylinderspule zu schieben, um bei Bedarf ein entsprechendes Magnetfeld zu erzeugen.

Auch bei einer solchen Methode ist die Stärke des Magnetfeldes limitiert, auch hier findet sich eine Temperaturempfindlichkeit der Feldstärke und die Betriebskosten sind entsprechend der notwendigen Stromversorgung significant.

Das von der Firma FONAR vertriebene resistive System hat ein Gewicht von 40t.

Die Entdeckung des Phänomens der Supraleitung wird Heike Kamerlingh Onnes zugeschrieben. Bei diesem Phänomen verschwindet der resistive Widerstand komplett! Nach dem Hochfahren des Magnetfeldes (Einspeisung von z.B. 400 A), werden Anfang und Ende der Zylinderspule miteinander verknüpft und der Strom fließt permanent, ohne Verluste!

Der größte Marktanteil wird durch supraleitende Systeme abgedeckt. Die Herstellungskosten sind zwar relativ hoch, aber ansonsten gibt es nur Vorteile:

Mit Maßnahmen zur Eindämmung des Heliumverbrauchs reduzieren entsprechend die Betriebskosten. Das Gewicht ist relativ moderat (4 t für ein 1,5 T System). Die Feldstärke wird von einer Änderung der Raumtemperatur nicht beeinflusst und die erzeugbare Feldstärke ist relativ beliebig.
8.1.1 Magnetfeldstärke

Das elektromagnetische Rauschen, welches seinen Ursprung im Patienten hat, steht in linearer Abhängigkeit zur verwendeten Magnetfeldstärke.

Das induzierte Kernspinsignal ist eine Funktion der Änderung der (transversalen) Kernmagnetisierung über der Zeit – also proportional zu Resonanzfrequenz und der Größe der (transversalen) Kernmagnetisierung.

Die transversale Kernmagnetisierung wird mit einem HF Anregungspuls aus der longitudinalen Kernmagnetisierung erzeugt.

Ist der verwendete Impuls ein 90° HF Anregungsimpuls, so wird aus der longitudinalen Kernmagnetisierung eine transversale Kernmagnetisierung.

Die longitudinale Kernmagnetisierung ist eine Funktion der Besetzungswahrscheinlichkeit der Niveaus. Die longitudinale Kernmagnetisierung steigt linear mit der verwendeten Magnetfeldstärke.

Das Verhältnis von Signal-zu-Rauschen ist damit annähernd linear mit der verwendeten Magnetfeldstärke.

Eine sehr gute Übersichtsarbeit zu 3T Anwendungen im Vergleich mit 1,5 T Anwendungen findet sich in Kuhl, C. K. et al. Radiology 2008;246:675-696

In diesem Beitrag findet sich auch die nebene stehende Abbildung, die verdeutlicht, dass sich der Kontrast zwischen Grauer und Weisser Hirnsubstanz von 1,5T auf 3T verschlechtert, wenn nicht parallel kontrastverbessernde Maßnahmen getroffen werden.

Die mit der Erhöhung der Feldstärke einhergehende Verlängerung der T1-Relaxationszeiten wirkt sich positiv auf die Effektivität von T1-verkürzenden Kontrastmitteln aus. Wie aus der nebene stehenden Abbildung zu erkennen, treten kontrastmitteleaufnehmende Strukturen bei einer höheren Feldstärke wesentlich deutlicher in Erscheinung.

Artefakte, die ihren Ursprung in lokalen Änderungen der magnetischen Suszeptibilität haben, sind eine Funktion der Feldstärke.

Als Konsequenz ist natürlich die Darstellung von Blutung bei der Verwendung einer höheren Feldstärke offensichtlicher.
Von der Zunahme der T1-Relaxationszeiten, plus der Zunahme des SNR mit der Verwendung höherer Feldstärke, profitieren natürlich auch die Flugzeit-Angiographien – ToF-MRA.

Bei der Feldstärke von 7T zeigen sich bei der ToF-MRA sogar Gefäßstrukturen, die mit dem „Goldstandard“, der DSA, nicht in dieser Deutlichkeit dokumentiert werden.

Eine andere Arbeit zu 3T Anwendungen im Vergleich mit 1,5 T Anwendungen findet sich in Sommer, T. et al. Radiology 2005;234:718-725

In diesem Beitrag wird argumentiert, dass die Verwendung einer höheren Feldstärke die diagnostische Sicherheit bei Erkrankungen der Herzkranzgefäße nicht beeinflusst. Für den Überweiser dürfte die bessere Bildqualität bei höherer Feldstärke (trotzdem) attraktiv sein.

Die chemische Verschiebung skaliert linear mit der Feldstärke. Was in der MR Spektroskopie ein gewünschtes Phänomen ist, kann bei 3,0 T zu einem unerwünschten Artefakt führen.

Da die Frequenzinformation zur räumlichen Zuordnung verwendet wird, führt eine Verschiebung von Fett- und Wasserbild zu den bekannten Artefakten der chemischen Verschiebung. Die Verwendung höherer Bandbreite würde dem entgegenwirken, würde aber auch gleichzeitig eine Rauscherhöhung bedeuten, da der Bildfilter auf eine größere Bandbreite eingestellt werden müsste.

Was in der fMRI eine willkommene Erscheinung ist, wird bei Gegenwart metallischer Implantate als lästiger Artefakt in Kauf genommen.

Da der Signalverlust eine Funktion des Frequenzspektrums innerhalb eines Raumelementes ist, hilft zur Artefaktreduktion eine höhere räumliche Auflösung und die Verwendung kurzer Echozeiten.

Mit der Verwendung einer höheren Feldstärke wie 3,0 T kommen die geometrischen Dimensionen der verwendeten elektromagnetischen Wellen in die Größenordnung der Patientenausdehnung. Durch entsprechende Wechselwirkungsprozesse kommt es zu B1-Inhomogenitäten, die zu entsprechenden Abschattungen führen.

Was im homogenen Phantom als dramatischer Artefakt zu sehen ist, ist innerhalb des Patienten in abgeminderter Form zu erkennen. Auch hier kommt es zu B1-Inhomogenitäten, die zu entsprechenden Abschattungen führen.

Hier ergeben sich Herausforderungen, für die sich vermarktbare Lösungen finden.

Mit der Verwendung hoher Feldstärken werden, wegen des zunehmenden Signal-zu-Rausch Verhältnisses, Fehlzuordnungen signalreicher Strukturen als lästige Bewegungsartefakte zur Kenntnis genommen.

Auch hier wird eine Herausforderung durch die Entwicklung kompensierender Methoden erfolgreich gemeistert. Die radiale Akquisition erlaubt eine inline Detektion einer Bewegung, mit einer prospektiven als auch retrospektiven Korrektur der eingelesenen Daten.

In ihren jeweils implementierten Lösungen heißen diese Akquisitionsschemata des radial abgetasteten k-Raums BLADE, PROPELLER oder MultiVane.
Eine weitere Herausforderung stellt sich über die Tatsache, dass die vom Patienten absorbierte Energie proportional zum Quadrat der verwendeten Resonanzfrequenz.

Hier gibt es mehrere Lösungsansätze, die sich primär auf die Modifikation der B1-Amplitude konzentrieren, deren Amplitude ebenfalls quadratisch in die SAR-Gleichung geht.

8.1.2 Magnetdesign

Die Entwicklung kurzer Magnete und die Einführung größerer Patientenöffnungen hat ganz neue Märkte eröffnet.

Wie aus der nebenstehenden Abbildung zu erkennen, haben sich mit der Eröffnung neuer Märkte neue Herausforderungen ergeben.

Schließlich steigt die SAR Belastung des Patienten mit der fünften Potenz des Patientenumfangs.

Der Markt wird sich aber weiter an diesem neuen Maßstab messen müssen, da die Bequemlichkeitseffekte einfach überwiegen.

8.2 Magnetfeldgradienten-Technologie

Magnetfeldgradienten werden gebraucht für die Vorbereitung der schichtselektiven Anregung, für die räumliche Kodierung und für die Darstellung des gewebespezifischen Parameters Diffusion.

Mußten man im Jahre 1986 noch mit einer luftgekühlten Gradientenspule mit einer Gradientstärke von 3 mT/m auskommen mit einer Slewrate von 3 T/m/s,
Die Schnelligkeit eines Magnetfeldgradienten etabliert sich in kürzeren Rampenzeiten und führt über entsprechend verkürzte Echos und Echozuglängen direkt zu einem positiven Einfluß auf die Bildqualität.

Die Stärke eines Magnetfeldgradientensystems kann zwar zusätzlich zur Echozeitverkürzung beitragen über die Anwendungen, wo es nur auf Amplitudenzzeitintegral ankommt und nicht auf die absolute Magnetfeldgradientenamplitude.

Letztlich ist allerdings der Patient selber der limitierende Faktor.

dB/dt – die Änderung des Magnetfeldes über der Zeit induziert in spulenähnlichen Geometrien Spannungen.

Der menschliche Körper ist zwar eine schlechter Leiter, aber er bietet solche Schleifen – und mit der derzeitigen Technologie lassen sich theoretisch Spannungen induzieren, die in den Bereich der biochemischen Spannungen zur Muskelstimulation hereinreichen. Der Effekt nennt sich periphere Nervenstimulation – PNS, und wird über entsprechende Stimulationsmonture abgefangen.

Aus dieser Herausforderung ergeben sich neue Lösungsansätze, die derzeit im akademischen Bereich evaluiert werden.

Verwendet man zum Beispiel eine bipolare Magnetfeldgradientenverteilung innerhalb des Bildbereichs, wie in der nebenstehenden Abbildung skizziert, so kann man zwar die PNS vermeiden, aber man endet in der Doppeldeutigkeits-Domäne. Die zu beseitigen, kennt man aber schon aus der parallelen Bildgebung. Entsprechend heisst die Technik:

PatLoc – parallel acquisition technique using localized gradients.
8.3 HF-Spulentechnologie

Ein drittes Standbein für die Kennzeichnung der Leistungsfähigkeit eines MR Systems liegt in der HF-Spulentechnologie.

Es war schon in den Anfängen der NMR bekannt, dass die Platzierung einer Oberflächenantenne möglichst dicht an der Signalquelle, für das Signal-zu-Rausch Verhältnis nur von Vorteil sein kann.

Mit der Einführung neue Anwendungen, wie der ceMRA der Becken-Bein Region, haben sich neue Herausforderungen ergeben, denen mit einer entsprechenden Spulenentwicklung begegnet wurde.

Um dem Anwender die Arbeit zu erleichtern, wurde sogar Konzepte entwickelt, die es erlauben Spulen und Spulensegmente interaktive zwischen den Messungen elektronisch abzuwählen oder zuzuschalten, so dass eine Umlagerung erspart bleibt.

Mit zunehmender Vielzahl von Spulenelementen wurde der Ausdruck „imaging matrix“ eingeführt.

Die grundlegende Idee, die dahinter steckt ist die, dass ein reduziertes Aufnahmenvolumen den Empfang von elektromagnetischem Rauschen vermindert. Die Verwendung vieler Einzelspule (array von Bildmatrizen) kompensiert dabei den Verlust der Abdeckung des gewünschten Bildgebungsvolumens.
8.3.1 PAT – parallele Akquisitionstechniken

8.3.1.1 mSENSE – modified SENSitivity Encoding

8.3.1.2 GRAPPA – GeneRalized Autocalibrating Partially Parallel Acquisition

Für alle diese „parallele Akquisitionstechniken“ gilt, dass bei gleichbleibender räumlicher Auflösung Meßzeit eingespart wird, und sich damit das SNR entsprechend verschlechtert:

$$SNR \sim \frac{1}{\sqrt{PAT}}$$
8.3.2 Die Kanalapokalypse

Der Ausblick auf weitere Verbesserungen in der Bildqualität und die ausbaufähige Verwendung räumlicher verteilter Signalaufnehmer zwecks Einsparungen in der räumlichen Kodierung treibt derzeit die Entwicklung entsprechend komplexer Spulen.

Nebenstehend eine experimentelle 128-Kanal Thoraxspule.

Nebenstehend eine experimentelle 96-Kanal Kopfspule für ein 3 T System.

Die Ergebnisse sind natürlich faszinierend. Die Antwort, die man sich mit Hilfe solcher experimentellen Spulen erhofft, folgt der Frage der Wirtschaftlichkeit einer potentiellen kommerziellen Nutzung.

8.3.3 TX-Arrays

Neben der Verwendung räumlich verteilter Oberflächenspulen zwecks Verbesserung in der Bildqualität und potentiellen Einsparungen an Messzeit, hat sich natürlich frühzeitig die Frage gestellt, ob auch im Sendefall Arrays einen Vorteil bringen würden.

Eine Anordnung mehrerer Sendespulen heißt analog zu den Empfangsspulen ein Sendarray, ein – TX-Array.

Es scheint, dass mit zunehmender Bedeutung höherer Magnetfelder für die Bildgebung, dass mit Hilfe der TX-Array – Technologie gleich mehrere Herausforderungen potentiell gemeistert werden können.

Im Vordergrund stehen dabei die vorherig erwähnten B1-Inhomogenitäten, die mit einem TX-Array hervorragend adressiert werden könnten (Schlagwort B1-Shimming).

Von der Homogenisierung der B1-Feldverteilung würden im Prinzip alle Anwendungen profitieren. Andere Überlegungen beziehen sich auf

- geometrisch völlig frei festlegbare regionale Sättiger
- fokussierte HF Energie
- gezieltes ASL
- „Parallele Anregung“
- räumliche Kodierung ohne Gradienten
| 7.2 | Magnetfeldgradientenspulen |
| 7.2.1 | Spulendesign |
| 7.2.2 | Leistungselektronik und Ansteuerung |
| 7.3 | HF-Sendeantennen |
| 7.3.1 | Spulendesign |
| 7.3.2 | Leistungselektronik und Ansteuerung |
| 7.4 | HF-Empfangsantennen |
| 7.4.1 | Spulendesign |
| 7.4.2 | Empfangselektronik und Ansteuerung |
| 7.5 | Bildverarbeitungskette |
9. Vorlesungsstunde: Sicherheitsrelevante Aspekte in der MRT

Die wesentlichen Interaktionspunkte in der MRT, die bei sicherheitsrelevanten Diskussionen berücksichtigt werden müssen, sind:

- das starke statische Magnetfeld \(B_0 \)
- der Verlust an Supraleitung (Quench)
- die HF-Belastung und Wechselwirkung
- das Schalten der Magnetfeldgradienten
- die Toxizität der verwendeten Kontrastmittel

Die gesetzlich vorgeschriebenen Warnfahnen warnen vor der 0,5 mT Linie vor den Gefahren in der Nähe des Kernspintomographen:

- Vorsicht starkes Magnetfeld
- Vorsicht Hochfrequenz
- kein Zutritt für Herzschrittmacherpatienten
- keine offene Flamme
- Vorsicht bei Implantaten
- mechanische Uhren können funktionsunfähig werden
- ferromagnetische Behälter wie Feuerlöschер oder Sauerstoffflaschen können zu Projektilen werden
- jegliche Kodierung aus Bank- und Kreditkarten werden permanent gelöscht

Sollte eine Gefahrensituation eingetroffen sein, bei der das Magnetfeld als lebensbedrohender Faktor bleibt, so lässt sich dieses Magnetfeld durch Betätigung des „Quench-Schalters“ ausschalten.

9.1 Statisches Magnetfeld B_0 – Anziehungskräfte

Die Kraft auf ein ferromagnetisches Objekt ist abhängig von der Streufeldverteilung in der Nähe des Magneten [49].

Aus der Physik kann die Kraft abgeleitet werden aus der Zunahme an Energie.

$$ F = \nabla U $$

Die Energie selber ist dabei das Produkt aus magnetischem Moment des ferromagnetischen Objektes multipliziert mit der Magnetfeldstärke.

$$ U = \frac{1}{2} \cdot \mathcal{M} \cdot \mathbf{B}_0 $$

Das magnetische Moment des ferromagnetischen Momentes ist dabei eine Funktion der örtlichen Feldstärke

$$ \mathcal{M} = \frac{Z \cdot V}{\mu_0} \cdot \mathbf{B}_0 $$

D.h. die resultierende Kraft ist das Produkt aus Streufeldverteilung (mT/m) und der tatsächlichen Magnetfeldstärke am derzeitigen Ort.

$$ F = \frac{Z \cdot V}{\mu_0} \cdot \mathbf{B}_0 \cdot \frac{\partial \mathbf{B}_0}{\partial z} $$

In den Handbüchern findet man die entsprechende Skala in T²/m.

Mit einer 200 g Haushaltsschere lässt sich der horizontale Zug an einem 1.5 T System messen. Danach zieht die Schere am „schlimmsten“ Punkt, direkt an der Patientenöffnung, mit einer horizontalen Zugkraft die etwa dem 20fachen der Gewichtskraft entspricht. Das sind in diesem Fall 4 kg.

Für ein 3 T System hochgerechnet, würde diese Zugkraft bei 12 kg liegen.

9.2 Statisches Magnetfeld B_0 – Torsionskräfte

Während die Anziehungskräfte im Isozentrum des Magneten verschwinden, sind dort die Torsionskräfte maximal.

Ferromagnetische Aneurysmenclipss werden sich in eine parallele Position twisten.

© 2018 PD Dr. Wolfgang R. Nitz

Version v10
9.3 Quench – Flüssigkeiten und Gase

Von der Häufigkeit her hätte der Quench-Fall eigentlich keine Berechtigung an erster Stelle erwähnt zu werden, aber im Fluß der Erklärung, als Überleitung von der Einleitung sei es berechtigt.

Das Phänomen der Supraleitung lebt von extrem tiefen Temperaturen und aus diesem Grunde liegen die supraleitenden Magnetfeldwicklungen in einem flüssigen Heliumbad bei – 269°C.

Der Verlust an Supraleitung kann provoziert sein, wie im vorherigen „Notfall“ beschrieben, er kann aber auch spontan auftreten, was in der Regel beim Hochfahren des Magneten schon einmal passieren kann. Daneben ist ein „Quench“ extrem selten.In jedem Fall geht die Magnetfeldenergie in das flüssige Heliumbad, welches verdampft und planmässig die Magnetfeldenergie abführt. Das gasförmige Helium ist dabei immer noch extrem kalt und wird über das Quenchrohr ins Freie abgeblasen. Sollte der Fluß durch das Quenchrohr behindert sein, so besteht die Gefahr der Sauerstoffverdrängung im Untersuchungsraum. Auch bei freiem Austritt werden alle im Bereich der Gasleitung liegenden Objekte extrem kalt und es besteht die Gefahr von Erfrierungen im Fall einer Berührung.

9.4 Wechselwirkung von B_0 und $\vec{V}B_0$ mit Implantaten

Das statische Magnetfeld B_0 stellt mit seiner Kombination aus Anziehungs- und Torsionskraft die größte Gefährdung bei ferromagnetischen Implantaten dar.

http://www.mrisafety.com/ ist die offizielle Webseite des Instituts für Magnetic Resonance Safety und ist in den meisten Fällen hilfreich und zuverlässig, was die Identifikation ferromagnetischer Implantate und ihre Gefährdung angeht. THE LIST gibt Auskunft über bisher getestete Fabrikate, und wenn sie nicht getestet sind, so finden sich allgemeine Informationen zur Gefährdungseinschätzung. Orthopädische Implantate gelten generell und allgemein nicht als Kontraindikation für eine MR Untersuchung. Die bekannten Fabrikate sind alle aus nicht ferromagnetischen Materialien.

Ausnahme bilden die Knochenschrauben, die aber so fest im Knochen sitzen, dass die Kräfte, die im Verhältnis zu ihrer Gewichtskraft stehen, vernachlässigbar sind.

Auf Grund der dramatischen Feldverzerrungen in der Umgebung der Schrauben, sollte man aber keine Bildgebung in diesem Bereich versuchen.

Magnetische Gefäßanastomosen dürften ähnlich den Aneurysmenclips eine Gefährdung darstellen, sind aber so sehen wie die mittlerweile wieder aus der Mode gekommenen magnetischen Implantataufbauten zur magnetischen Fixierung von Zahnprothesen.
Bei vier Herzklappen gibt es Veröffentlichungen, die die erwähnte Unbedenklichkeit leicht einschränken.

Danach kann es in einem Fall zu Funktionsstörungen kommen, zum Zeitpunkt, da der Patient in das MR geschoben wird [50].

Mechanische Herzklappen sind ferromagnetisch, aber die Kräfte, die durch das pulsierende Blut auf diese Klappe ausgeübt werden, sind um eine Größenordnung größer, als die Kräfte durch das statische Magnetfeld.

Mechanische Herzklappen gelten nicht als Kontraindikation für eine MRT.

In drei weiteren Fällen kann auf Grundlage der Lenzschen Regel die Klappenfunktion behindert werden.

Bei bestimmten Implantaten, wie z.B. Liquorshunts, ist die MR-Kompatibilität auf entsprechenden Datenblättern gekennzeichnet. Hier findet man z.B. Angaben wie: arbeitet zuverlässig bis 70G/cm. Hier wirkt sich also ein Magnetfeldgradient auf die Funktionsweise aus.

70 Gauss entsprechen 7 mT – cm in m umgerechnet entspricht das also 700 mT/m. Damit sind also die in der Bildgebung verwendeten Gradienten vernachlässigbar. Zu beachten ist allerdings, dass die lokale Magnetfeldänderung des Magneten selber mit 7 T/m an der Patientenöffnung, für die Passagezeit den Liquorshunt außer Funktion setzt!

Die künstliche Hüftgelenkprothese, als klassisches Zeichen auf der Warntafel zu finden, gilt nicht als Kontraindikation für die MRT!

Auch hier kommen ausnahmslos nichtferromagnetische Materialien zur Anwendung.
9.5 Wechselwirkung mit HF

9.5.1 EKG-Elektroden

MR-kompatible EKG Elektroden sind explizit getestet, zugelassen und stellen keine Sicherheitsrisiko dar.

Für nicht-MR-kompatible EKG-Elektroden gilt:

9.5.2 Hüftgelenksimplantate

Bei einer Magnetfeldstärke von 3 T und bei beidseitig implantierten Hüftgelenksprothesen gibt es einen Bericht, dass es während der MR Untersuchung zu einem Funkenflug zwischen den Oberschenkeln gekommen ist, der mit entsprechenden punktuellen Verbrennungen verbunden war.

9.5.3 Menschliche Stromschleifen

9.5.4 Tätowierungen und permanentes Makeup

Der zugrundeliegende Mechanismus ist noch nicht voll verstanden. In 1,5 % aller Tätowierung kommt es zu Komplikationen in Form von dramatischer Hautreizung, bis hin zur Bläschenbildung.

Es gibt Empfehlungen, solche Tätowierungen mit einem nassen Tuch abzudecken – es gibt aber keine Arbeiten darüber, ob und warum das funktioniert.

9.6 Wechselwirkung von B₀ und HF mit Implantaten

Brücken und Stäbe zur Wirbelsäulenstabilisierung stellen allgemein keine Kontraindikation für eine MR Untersuchung dar.

Bei 3 T ist bei größerer Ausdehnung Vorsicht geboten, da die Dimensionen an die Wellenlänge der verwendeten elektromagnetischen Strahlung herankommen und es hier im Resonanzfall zur Erwärmung des Implantats kommen kann.

Die Wahrscheinlichkeit eines solchen Vorfalls ist extrem gering, aber nicht Null.

9.6.1 Herzschrittmacher

Es gibt in der Literatur nicht wenige Arbeiten, in denen auf eine Komplikationslose Untersuchung von Herzschrittmacherpatienten hingewiesen wird. Die meisten der bisher publizierten Arbeiten sind experimenteller empirischer Natur und nicht analytisch.

Für bestimmte Herzschrittmachermodelle scheint das Problem der Funktionsbeeinträchtigung gelöst. Der derzeit noch offene Punkt ist die potentielle Einkopplung der E- und B-Felder der verwendeten elektromagnetischen Hochfrequenz. Gerade im Bereich ausserhalb des Isozentrums können E-Feld Komponenten in die als Antenne wirkende Herzschrittmachzuleitung einkoppeln. Das Risiko ist niedrig, aber nicht Null.
9.6.2 Neurostimulatoren

Es gibt Veröffentlichungen, die auf eine Reihe erfolgreicher MRTs in Verbindung mit Neurostimulatoren hinweisen.

Im Mai 2005 hat sich die amerikanische Gesundheitsbehörde genötigt gesehen, einen Warnbrief herauszugeben, der darauf hinweist, dass es vermehrt Berichte zu Unfällen gibt, bei denen Patienten mit Neurostimulatoren nach einer MRT Untersuchung neurologische Defizite aufweisen, bis hin zum Koma.

9.6.3 Cochlear Implantate

In der Literatur gelten Cochlear-Implantate als Kontraindikation – primär auf Grund der verwendeten ferromagnetischen Materialien.

Es gibt jedoch Firmen, die eine MR Kompatibilität zertifizieren, mit entsprechenden Vorschlägen zur Fixierung.

Es liegt hier in der Verantwortung des Arztes, eine Entscheidung zu treffen und sich gegebenenfalls über eine Patientenerklärung von Ansprüchen frei zu halten.
9.6.4 Gefäßprothesen (Stents)

Stents stellen in keinem Fall und zu keinem Zeitpunkt eine Kontraindikation für eine MRT dar. Selbst auf die im Peripheriebereich selten gewordenen ferromagnetischen Stents wirken auf Grund des geringen Gewiches nur vernachlässigbare Kräfte.

Dies gilt auch für die ferromagnetischen Koronarstents.

9.6.5 Mechanische Kontrazeptiva

Mechanische Kontrazeptiva sind größtenteils aus Kunststoff und damit völlig unbedenklich im MR.

Bei leitenden Spiralstrukturen ist bei einer Hochfeld-MRT die Ausdehnung zu berücksichtigen. Hier spielt wieder die geringe Wahrscheinlichkeit einer Einkopplung des HF Feldes in die leitende Struktur eine Rolle.

9.6.6 Zahnspangen und Fixierplättchen

Zahnspangen sind von ihren Dimensionen her zu klein, als dass eine Einkopplung mit dem HF Feld eine Rolle spielen sollte.

Die verwendeten Fixierplättchen können ferromagnetisch sein. Auf Grund des geringen Gewich- tes sind aber die wirksam werdenden Kräfte vernachlässigbar.

Es gibt bisher keine dokumentierten Vorfälle.

9.6.7 Körperschmuck

Die Dimensionen üblichen Körperschmucks reichen nicht aus, um hinsichtlich ferromagnetischer Anziehung oder Torsion eine Gefährdung darzustellen.

Die Dimensionen üblichen Körperschmucks reichen auch nicht aus, um über eine potentielle HF Einkopplung zu einer Erwärmung zu führen.

Es gibt keine Berichte zu Vorfällen in Bezug auf Körperschmuck.
10. Vorlesungsstunde: Patientengefährdung in der MRT

10.1 Die Geräuschkulisse – der Lärm – das Knattern

Die Schnelligkeit eines Gradientensystems wird durch den Quotienten aus Maximalamplitude und Anstiegszeit charakterisiert, der so genannten Slew-Rate. 1986 waren die Gradientenspulen noch luftgekühlt mit einer Maximalamplitude von 3 mT/m bei einer Slew-Rate von 3 T/m/s. Heute liegen wir bei Gradientenamplituden von 45 mT/m bei einer Slew-Rate von 200 T/m/s.

Das Schalten der Magnetfeldgradienten stellt auch die primäre Geräuschquelle bei einer MR-Untersuchung dar.

Nach Hendrik Anton Lorentz wirkt auf einen stromdurchflossenen Leiter in Gegenwart eines starken Magnetfeldes eine mechanische Kraft, die so genannte Lorentz-Kraft. Die Kraft auf eine Spulenwicklung lässt sich abschätzen und liegt bei etwa 2,827 kN. Das entspricht einer Gewichtskraft von 288 kg.

Bei einer gewünschten Magnetfeldänderung von 10 mT im äußeren Bereich des Bildgebungsvolumens braucht man etwa 13 Windungen, die von 600 Ampere durchflossen werden. Allein auf diese 13 Windungen wirkt entsprechend eine Kraft von 3,74 Tonnen.

Die Kräfte verteilen sich natürlich radial – und sind noch um den Faktor 10 unterhalb der Kräfte, die für die mechanische Integrität der Magnetfeldgradientenspule kritisch wären. Es bleibt trotzdem beeindruckend, in welcher Größenordnung diese Kräfte die Magnetfeldgradientenspulen vibrieren lassen.

Die Dauer für einen Schichtselektionsgradienten liegt z.B. bei 2,5 ms. Die Wiederholfrequenz von Zug zu keinem Zug liegt damit bei 200 Hz.

Das ergibt einen Ton zwischen „a“ (220 Hz) und „g“ (196 Hz). Bei einer Bandbreite von 195 Hz/pixel beträgt die Einschaltdauer eines Frequenzkodiergradienten 5,128 ms. Die Frequenz von Kraftwirkung zu keiner Kraftwirkung wäre damit 97,5 Hz, welches dicht am „G“ (98 Hz) liegt.

Unglücklicherweise sind das alles unterschiedliche Frequenzen mit teilweiser diskontinuierlicher Periodizität, so dass letztlich nur ein „Knattern“ übrig bleibt.

Nach der MR Sicherheitsrichtlinie IEC 60601-2-33, darf kein Gerät auf den Markt gebracht werden, welches zu irgend einem Zeitpunkt an irgendeiner Stelle mehr als 140 dB(A) produziert.

10.2 Die NSF – die Nephrogene Systemische Fibrose

Nach dieser Studie haben 5 von 9 terminal niereinsuffiziente Patienten Symptome der Nephrogenen Systemischen Fibrose entwickelt.

Mit dieser Arbeit ist die Unbedenklichkeit gadoliniumhaltiger Kontrastmittel in Frage gestellt worden.

In einer Routinesitzung vom 5. Mai 2009 hat das Bundesministerium für Arzneimittel und Medizinprodukte entsprechend der Empfehlung des CHMP (Committee for Human use of Medical Products) eine Klassifizierung der derzeitigen Gd-haltigen Kontrastmittel in drei Risikogruppen bekanntgegeben.

Die Einstufung ist in den rechtsstehenden Grafiken aufgeführt:

Interessanterweise scheinen einige gadoliniumhaltige Kontrastmittel weniger betroffen zu sein, als andere.

Unter Berücksichtigung der Anzahl der Untersuchungszahlen und den Mengen an verabreichten Kontrastmitteln, ins Verhältnis gesetzt zu den bisher bekannten Fällen, kann das Risiko eine NSF Erkrankung als äußerst gering eingestuft werden.

Mögliche Risiken gadoliniumhaltiger Kontrastmittel sollten trotzdem nicht unterschätzt werden.
11. Vorlesungsstunde – Bildkontrastberechnungen (SE, IR)

11.1 „Elementare“ Bildgebungssequenzen

11.1.1 Spin-Echo- versus Gradienten-Echo-Sequenzen (SE, GRE)

Die so eingeführte Spin-Echo-Bildgebungssequenz war 1985 die erste in der klinischen Routinebildgebung eingeführte und angewendete, und kommt auch heute noch unverändert in der T1-gewichteten Bildgebung zur Anwendung. Sie ermöglicht die Rephasierung oder Refokussierung des Signals in den Bereichen wie der Schädelbasis oder bei Blutungen, wo Unterschiede in der magnetischen Suszeptibilität ansonsten zur Auslöschung führen würden.

Zur Charakterisierung von Blutungen ist der dephasierende Effekt der Suszeptibilitätsgradienten erwünscht. In dem Fall kommen u.a. so genannte Gradienten-Echo-Sequenzen zum Einsatz, die über das Dephasierungsphänomen eine solche Charakterisierung erlauben.

Nachteilig und diagnostisch unbrauchbar sind die durch die Dephasierung verursachten Signalauslöschungen im Bereich der Schädelbasis.

11.1.2 Das Sequenzklassifizierungsschema

Eine erste grobe Unterteilung der Sequenzen lässt sich über die Zuordnung zur Gruppe der Gradienten-Echos und der Spin-Echos durchführen. Eine weitere Unterteilung kann dann erfolgen über die bisher diskutierten Einzelecho-Techniken:

- eine Fourierzeile pro Anregung
- mehrere Fourierzeilen nach einer Anregung

11.1.3 Die Multi-Echo-Spin-Echo-Sequenz

11.1.4 Die “schnelle” Spin-Echo-Sequenz (TSE, FSE)

Bei dieser Technik werden die multiplen Echos nicht für die Generierung weiterer Bilder verwendet, sondern die einzelnen Echos werden jeweils phasenkodiert und damit weiteren Fourierzeilen zugeordnet.

Die Meßzeitverkürzung, die man auf diese Weise erhält, ist proportional zu der Anzahl der verwendeten Echos (TurboFaktor, EPI-Faktor oder Echourzlänge – ETL).

Der Kontrast entspricht nicht etwa dem Mittelwert der Wichtungen aller Fourierzeilen, sondern es wird die Wichtung dominieren, die für die zentralen k-Raum-Zeilen vorliegt. Durch Veränderung der Reihenfolge der Phasenkodiertabelle lassen sich so, bei gleicher Sequenz, einmal T2-gewichtete Bilder und zum anderen PD-gewichtete Bilder erzeugen.

Die heute in der klinischen Routine gefahrenen PD- und T2-gewichteten Protokolle, basieren (fast) ausschließlich auf diesem Sequenztyp.

Die Kodierung und Sortierung der Fourierzeilen lässt sich auch so arrangieren, dass mit einer Anregung sowohl PD-, als auch T2-gewichtete Bilder generiert werden können. Einige Fourierzeilen können auch kopiert in beiden k-Räumen verwendet werden. So etwas nennt man dann „Echo-Sharing“.
11.3 Bildkontraste der SE-Sequenz

Eine Spin-Echo-Sequenz verfügt hinsichtlich einer Steuerung des Bildkontrastes über zwei prinzipielle Parameter:

- TR – die Repetitionszeit, als Zeit zwischen den Repetitionen einer Anregung und
- TE – die Echozeit, als Zeit zwischen Anregung und Datenakquisition (zeitliches Zentrum des Anregungspulses und Zeitpunkt der maximalen Signalinduktion)

Der Bildkontrast ergibt sich entsprechend der Lösungen der Bloch-Gleichung.

Je länger man wartet, nach einer Anregung, um so größer wird die longitudinale Kernmagnetisierung, die mit dem nächsten Anregungspuls in eine signalinduzierende transversale Kernmagnetisierung umgewandelt wird.

Je schneller ich nach der Anregung messe, um so größer wird das detektierte Signal sein.

11.3.1 Die PD-Wichtung

Mit Wahl einer langen Repetitionszeit lässt sich im Bildkontrast keine Unterscheidung verschiedener T1-Relaxationszeiten mehr feststellen. Der T1-Einfluss ist damit unterdrückt.

Mit Wahl einer kurzen Echozeit wird der T2-Einfluss unterdrückt und damit bleibt kontrastbestimmend die Dichte der Protonen pro Raumelement. Das Bild aus einem solchen Protokoll nennt man protonendichtegewichtet Pd-W.

11.3.2 Die T1-Wichtung

11.3.3 Die T_2-Wichtung

Mit Wahl einer langen Repetitionszeit wird der Einfluß der T_1-Relaxation auf den Bildkontrast unterdrückt.

In Verbindung mit einer langen Echozeit kommt Gewebe mit einer langen T_2-Relaxationszeit hyperintens zur Darstellung. Man spricht in diesem Fall von einer T_2-gewichteten Bildgebung.

11.4 Die SE – Sequenz mit Vorbereitung der Magnetisierung

11.4.1 Die Fettsättigung

Die „einfachste“ Form der Manipulation der Magnetisierung vor der Bildgebung, ist die Unterdrückung des Fettsignals über eine so genannte „Fettsättigung“. Dabei wird das Fett spektral angeregt und die so erzeugte transversale Magnetisierung sofort dephasiert. Die unmittelbar folgende Bildgebungssequenz wird im Fett keine longitudinale Kernmagnetisierung zur Anregung vorfinden und damit kommt Fett nicht zur Darstellung. Voraussetzung für eine erfolgreiche Fettsättigung ist eine hohe Magnetfeldhomogenität.

11.4.2 Die STIR

Fett hat nicht nur eine charakteristische Resonanzfrequenz, sondern auch eine relativ kurze T_1-Relaxationszeit, im Vergleich zu anderem Gewebe. Nach einer Inversion der longitudinalen Kernmagnetisierung zu Beginn einer Messung, werden alle Kernmagnetisierungen wieder eine Parallelausrichtung anstreben – mit einer Geschwindigkeit, die durch ihre T_1-Relaxationszeit charakterisiert ist.

Fett wird als erstes Gewebe den Punkt erreichen, wo die longitudinale Komponente der Kernmagnetisierung gerade durch den Nulldurchgang geht (Übergang paralleler zu antiparalleler Ausrichtung). Wird an dieser Stelle die Bildgebungssequenz gestartet, so findet sich im Fettgewebe keine anregbare longitudinale Kernmagnetisierung. Fett kommt mit diesem Ansatz nicht zur Darstellung.
11.4.3 Die FLAIR

11.4.4 Signalverlauf der IR – Sequenz

Die Magnetisierung der Flüssigkeit ändert sich nach der Inversion und Anregung. Die flüssigkeitsspezifische Magnetisierung nimmt an und reduziert sich dann auf kleineren Werten. Die magnetische Suszeptibilität der Flüssigkeit nimmt leicht an und bei der nächsten Inversion nimmt die Magnetisierung leicht ab. Die magnetische Suszeptibilität nimmt leicht an und bei der nächsten Anregung nimmt die Magnetisierung leicht ab.
Nach Ablauf der Inversionszeit:
\[M_z^{0+}(T) = M_0 \left(1 - 2 \cdot e^{-T/T_i} \right) \]
Der Anregungspuls setzt die longitudinale Magnetisierung auf Null:
\[M_z^{0+}(T_i + 90^\circ) = 0 \]
Es folgt die Erholung:
\[M_z^{1-}(t) = M_0 \left(1 - e^{-(t-T_i)/T_i} \right) \]
für \(T_i < t < T_R \)

Nach Ablauf der Repetitionszeit:
\[M_z^{1+}(TR) = M_0 \left(1 - e^{-(T-T_i)/T_i} \right) \]

1. Repetition der Inversion und erneute Erholung bis zur Anregung:
\[M_z^{1+}(0) = -M_z^{1+}(TR) = -M_0 \left(1 - e^{-(T-T_i)/T_i} \right) \]
\[M_z^{1+}(t) = -M_z^{1-} \cdot e^{-(t/T_i)} + M_0 \left(1 - e^{-(t/T_i)} \right) \text{ für } 0 < t < T_i \]
\[M_z^{1+}(T_i) = M_0 \left(1 - e^{-(T-T_i)/T_i} \right) \cdot e^{-(T_i/T_i)} + M_0 \left(1 - e^{-(T_i/T_i)} \right) \]
\[M_z = M_0 \left(1 - 2 \cdot e^{-(T_i/T_i)} \pm e^{-(T_i/T_i)} \right) \]

1. Problem – ist der Ansatz gültig?
\[M_z^{1+}(t) = -M_z^{1+} \cdot e^{-(t/T_i)} + M_0 \left(1 - e^{-(t/T_i)} \right) \]

Alternativ – ausgehend von den Bloch-Gleichungen:
\[\frac{dM_z}{dt} = -\frac{M_z - M_0}{T_1} \]
Gewöhnliche Differentialgleichung erster Ordnung mit trennbaren Variablen

\[\text{Es kommt neben der Funktion nur eine Ableitung der Funktion vor.} \]

Lösung durch Integration
\[M_z(T_i) - M_0 = \int_{-M_0 \left(1 - e^{-(T-T_i)/T_i} \right)}^{M_z} \frac{dM_z}{dt} \]
\[\ln \left(M_z^+ - M_0 \right) - \ln \left(-M_0 \left(1 - e^{-(T-T_i)/T_i} \right) - M_0 \right) = -\frac{T_i}{T_1} \]

© 2018 PD Dr. Wolfgang R. Nitz
\[
\ln \left(\frac{M_z}{M_0} \right) = \ln \left(\frac{M_0 - M_0(1 - e^{-\frac{T_2}{T_1}})}{M_0 - M_0(1 - e^{-\frac{T_1}{T_1}})} \right) \approx \frac{T_2}{T_1}
\]
\[
\frac{(M_z - M_0)}{(M_0 - M_0(1 - e^{-\frac{T_1}{T_1}}))} = \frac{e^{-\frac{T_1}{T_1}}}{M_0(1 - e^{-\frac{T_1}{T_1}})}
\]
\[
M_z(T_1) = M_0 + \left(-M_0 \cdot e^{-\frac{T_1}{T_1}} + M_0 \cdot e^{-\frac{T_1}{T_1}} - M_0 \cdot e^{-\frac{T_1}{T_1}} \right)
\]
\[
M_z(T_1) = M_0 \left(1 - 2 \cdot e^{-\frac{T_1}{T_1}} \right)
\]

Der Ansatz ist also gültig.

\[
M_z^\alpha(t) = -M_z^\alpha \cdot e^{-\frac{T_1}{T_1}} + M_0 \left(1 - e^{-\frac{T_1}{T_1}} \right)
\]

2. Kleines Problem

IR ist eine Inversion gefolgt von einer Spin-Echo-Sequenz

\[
M_z^\alpha(t = 0) = M_z^{\alpha\alpha} = M_0 \quad \text{Die junge magnetische Magnetisierung vor der Inversion (\(\alpha\)).}
\]

\[
M_z^{\alpha\alpha}(t = 0) = M_z^{\alpha\alpha} = -M_0 \quad \text{Die Magnetisierung nach der Inversion (\(\alpha\)).}
\]

\[
M_z^{\alpha\beta}(t) = -M_z^{\alpha\beta} \cdot e^{-\frac{T_1}{T_1}} + M_0 \left(1 - e^{-\frac{T_1}{T_1}} \right) = M_0 \left(1 - 2 \cdot e^{-\frac{T_1}{T_1}} \right)
\]

\[
M_z^{\alpha\beta}(T_1) = M_0 \left(1 - 2 \cdot e^{-\frac{T_1}{T_1}} \right)
\]
mit dem 90° Anregungsimpuls wird die longitudinale Magnetisierung auf Null gesetzt (in eine transversale Magnetisierung umgewandelt)

\[M_z^\text{in}(T_f) = M_0 \left(1 - 2 \cdot e^{-\gamma T/T_I} \right) \]

Es folgt die Erholung

\[M_z^-(t) = M_0 \left(1 - e^{-\gamma T/T_I} \right) \]

\[M_z^-(T_E/2) = M_0 \left(1 - e^{-\gamma (T_E/2)/T_I} \right) \]

\[M_z^-(T_R/2) = M_0 \left(1 - e^{-\gamma T/R} \right) \]

was immer sich erholt hat wird von dem 180° HF Refokussierungsimpuls erneut invertiert:

\[M_z^- \left(T_E/2 \right) = -M_0 \left(1 - e^{-\gamma (T_E/2)/T_I} \right) = -M_0 \left(1 - e^{-\gamma T/2} \right) \]

Es folgt die Erholung

\[M_z^- \left(t \right) = M_z^+ \cdot e^{-\gamma T_I} + M_0 \left(1 - e^{-\gamma T_I} \right) \]

\[= -M_0 \left(1 - e^{-\gamma T/2} \right) \cdot e^{-\gamma T} + M_0 \left(1 - e^{-\gamma T_I} \right) \]

\[\text{für} \quad (T_f + T_E/2) < t < T_R \]

\[M_z^+ \left(T_E \right) = M_0 \left(1 - 2 \cdot e^{-\gamma (T_E-T_R)/T_I} + e^{-\gamma T/2} \left(2 \cdot T_E - (T_E-T_R)/T_I \right) \right) \]

\[M_z^+ \left(T_R \right) = M_0 \left(1 - 2 \cdot e^{-\gamma (T_R-T_E)/T_I} + e^{-\gamma T/2} \left(2 \cdot T_R - (T_R-T_E)/T_I \right) \right) \]

\[M_z^+ \left(0 \right) = -M_0 \left(1 - 2 \cdot e^{-\gamma (T_R-T_E)/T_I} + e^{-\gamma (T_R-T_E)/T_I} \right) \]

\[= -M_0 \left(1 - 2 \cdot e^{-\gamma (T_R-T_E)/T_I} + e^{-\gamma (T_R-T_E)/T_I} \right) \cdot e^{-\gamma T_I} + M_0 \left(1 - e^{-\gamma T_I} \right) \]

\[\text{und Erholung} \]

\[M_z^+ \left(t \right) = M_z^+ \cdot e^{-\gamma T_I} + M_0 \left(1 - e^{-\gamma T_I} \right) \]

\[\text{und Erholung} \]
Mit der 90° Anregung wird die longitudinale Magnetisierung immer auf einen festen Startpunkt (0) gesetzt. Ab der ersten Repetition haben alle erzeugten transversalen Magnetisierungen M_y die gleiche Größe.

Das erzeugte Signal

$$S \sim M_y = M_0 \left(1 - 2 \cdot e^{-T_s/\tau_1} + 2 \cdot e^{-\left(T_s - T_2\right)\tau_1} - e^{-T_s/\tau_1} \right) \cdot e^{-T_2/\tau_2}$$

1. Ausgangspunkt

 (+) nach Inversion

 (-) vor Inversion

 (0...n) Anzahl der Repetitionen

$M_z^{0+} = -M_z^{0-} = -M_0$ Die longitudinale Magnetisierung ist nach der Inversion gleich der negativen Ausgangsmagnetisierung

$M_z^{0+}(t) = -M_z^{0-} \cdot e^{-t/\tau_1} + M_0 \left(1 - e^{-t/\tau_1} \right) = M_0 \left(2 \cdot e^{-t/\tau_1} \right)$

mit der Zeit verschwindet die Inversion und die Magnetisierung kehrt in ihren Gleichgewichtszustand zurück.
2. Verwendung der longitudinalen Magnetisierung in einer ersten Messung nach einer Inversionszeit T_i

\[M_z^{0+}(T_i) = 0 \]

\[M_{xy}^{0+}(T_i) = -M_z^{0+} \cdot e^{-T_i/T_R} + M_0 \left(1 - e^{-T_i/T_R} \right) = M_0 \left(1 - 2 \cdot e^{-T_i/T_R} \right) \]

mit nachfolgender Erholung, bzw. Dephasierung

\[M_z^{-}(t) = M_0 \left(1 - e^{-\left(t-T_i/T_R\right)} \right) \quad \text{für} \quad T_i < t < (T_i + T_g/2) \]

was immer sich erholt hat wird durch den HF Refokussierungspuls erneut invertiert.

\[M_z^{1+}(T_g/2) = -M_0 \left(1 - e^{-\left(T_g/2-T_i/T_R\right)} \right) = M_0 \left(1 - e^{-T_g/(2T_R)} \right) \]

3. Erholung der longitudinalen Magnetisierung nach der HF Refokussierung bis zur nächsten Messung (T_R)

\[M_z^{1+}(T_R/2) = -M_0 \left(1 - e^{-T_R/(2T_R)} \right) \]

\[M_z^{-}(t) = M_z^{1+} \cdot e^{-T_i/T_R} + M_0 \left(1 - e^{-T_i/T_R} \right) \]

\[= -M_0 \left(1 - e^{-T_R/(2T_R)} \right) \cdot e^{-T_i/T_R} + M_0 \left(1 - e^{-T_i/T_R} \right) \]

\[= M_0 \left(1 - 2 \cdot e^{-T_i/T_R} + e^{-T_R/(2T_R)} \cdot e^{-T_i/T_R} \right) \]

\[= M_0 \left(1 - 2 \cdot e^{-T_i/T_R} + e^{-T_R/(2T_R)} \cdot e^{-T_i/T_R} \right) \quad \text{für} \quad (T_i + T_g/2) < t < T_R \]

\[M_z^{2-}(T_R) = M_0 \left(1 - 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} + e^{-T_g/(2T_R)} \cdot (T_g-T_i+T_R/2)/T_R \right) \]

4. Inversion und M_0 nach Inversionszeit (T_i)

\[M_z^{2-}(T_R) = M_0 \left(1 - 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} + e^{-T_g/(2T_R)} \cdot (T_g-T_i+T_R/2)/T_R \right) \]

\[= M_0 \left(1 - 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} + e^{-\left(T_R-T_i+T_g/2\right)/T_R} \right) \]

\[M_z^{-}(t) = M_z^{2+} \cdot e^{-T_i/T_R} + M_0 \left(1 - e^{-T_i/T_R} \right) \]

\[= -M_0 \left(1 - 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} + e^{-\left(T_R-T_i+T_g/2\right)/T_R} \right) \cdot e^{-T_i/T_R} + M_0 \left(1 - e^{-T_i/T_R} \right) \]

\[= M_0 \left(1 - 2 \cdot e^{-T_i/T_R} + e^{-\left(T_R-T_i+T_g/2\right)/T_R} \cdot e^{-T_i/T_R} \right) \]

\[\quad \text{für} \quad 0 < t < T_i \]

\[M_z^{1+}(T_i) = -M_0 \left(1 - 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} + e^{-\left(T_R-T_i+T_g/2\right)/T_R} \right) \cdot e^{T_i/T_R} \]

\[+ M_0 \left(1 - e^{-T_i/T_R} \right) = M_0 \left(1 - 2 \cdot e^{T_i/T_R} + 2 \cdot e^{-\left(T_R-T_i+T_g/2\right)/T_R} - e^{-T_i/T_R} \right) \]

© 2018 PD Dr. Wolfgang R. Nitz

Version v10
11.5 Die TSE-Sequenz mit Vorbereitung der Magnetisierung

11.5.1 Die TIR

Die eingeführte Manipulation der Kernmagnetisierung vor der eigentlichen Bildgebung, lässt sich auf den schon eingeführten Multi-Echo-Ansatz übertragen.

Nach einer Inversionszeit lässt sich der Echozug einer TSE auf die so vorbereitete longitudinale Magnetisierung anwenden. So lässt sich z.B. mit einem IR-Ansatz der T1-Kontrast zwischen Grauer und Weisser Hirnsubstanz optimieren.

\[
\begin{align*}
M_z(T_1^+) &= 0 \\
M_y(T_1^+) &= M_0\left(1 - 2e^{-\frac{T_1}{T_1}} + 2e^{-\frac{T_1+T_2}{T_1}} - e^{-\frac{T_2}{T_1}}\right)e^{-\frac{T_2}{T_1}}
\end{align*}
\]

Das erzeugte Signal

\[
S - M_y = M_0\left(1 - 2e^{-\frac{T_1}{T_1}} + 2e^{-\frac{T_1+T_2}{T_1}} - e^{-\frac{T_2}{T_1}}\right)e^{-\frac{T_2}{T_1}}
\]

11.5.2 Die TIRM (turboFLAIR)

Das liquorunterdrückte Protokoll verwendet Inversionszeiten zwischen 2 und 2,5 Sekunden und würde ohne Verwendung einer Multi-Echo-Spin-Echo-Sequenz zu unpraktikablen Messzeiten führen. Aus diesem Grund kommt dieser Ansatz in der klinischen Routine nur in Kombination mit einer Multi-Echo-Spin-Echo-Sequenz zum Einsatz[12-15].
11.5.3 Die RESTORE, DRIVE, FR-FSE

Die Nachbereitung einer longitudinalen Kernmagnetisierung kann auch als Vorbereitung für die nächste Anregung gesehen werden.

Die RESTORE Technik verwendet einen „Flip-back“-Puls am Ende des Echozuges, um die in der Transversalebene verbliebene Kernmagnetisierung in die longitudinale Ausrichtung zu bringen. Damit steht für Gewebe mit langen T2-Relaxationszeiten zu Beginn der nächsten Anregung mehr longitudinale Kernmagnetisierung zur Verfügung und dieses Gewebe kommt damit kontrastreicher zur Darstellung [16,17].

11.5.4 Die SPACE, CUBE, VISTA

Das Prinzip der Phasenkodierung in der Ebene lässt sich auch zwecks weiterer „Partitionierung“ einer Schicht verwenden. Bei diesem Ansatz wird nicht eine Schicht, sondern ein Volumen angeregt.

Die bisher eingeführte 2D-Technik wird dann zu einer 3D-Technik. Kombiniert mit der TSE-Sequenz lässt sich, unter Verwendung von Refokussierungswinkeln, der kleiner als 180° sind, sogar zeigen, dass man eine Bildqualitätsverbesserung erreichen kann, wenn man mit unterschiedlichen Refokussierungswinkeln dafür sorgt, dass man gerade im Zentrum des k-Raums ein optimales SNR hat [18,19].